期刊文献+

基于主动学习SVM分类器的视频分类 被引量:21

Video genre categorization using SVM classifiers with active learning
下载PDF
导出
摘要 提出一种基于主动学习SVM分类器的视频分类算法.该算法分为两个步骤:首先分析并提取与视频类型有关的十维底层视觉特征;然后用SVM分类器建立这些底层特征与视频类型之间的联系.在获取SVM分类器所需的训练样本时,采用主动学习的方法选择对SVM分类器最"有用"的样本提供给用户进行标注,用更少的训练样本获得与大量训练样本近似的分类效果,从而减轻用户标注负担.针对多类SVM分类的主动学习问题,提出用后验概率计算分类器对未标注样本的置信度进行样本选择.实验结果表明,主动学习算法与随机采样标注的被动学习算法相比,在相同的训练样本情况下能够获得更高的分类精度;而基于后验概率选择样本的主动学习要略好于传统的基于变型空间(version space)选择样本的主动学习. A video genre categorization scheme based on SVM classifiers with active learning was proposed. The scheme consists of two steps: firstly, ten computable visual features related to video genres were analyzed and extracted; secondly, to acquire training samples for SVM classifiers, active learning was adopted to select the most informative samples for users to label. This can achieve comparable categorization accuracy with fewer training samples labeled. Moreover, to tackle the problem of selecting informative samples in the multi-class case, a new sample selection strategy was proposed. In this strategy, posterior probability was used to calculate the confidences of unlabeled samples. The informative samples were selected from the unlabeled samples according to their confidences. Experimental results show that active learning achieves good video genre categorization performance compared with the previous passive learning method, and active learning based on posterior probability performs better than the existing method based on version space.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第5期473-478,共6页 JUSTC
基金 国家自然科学基金重点项目(60632040) 教育部-微软联合重点实验室科研基金(06120807)资助
关键词 主动学习 支持向量机 视频类型分类 active learning SVM video genre categorization
  • 相关文献

参考文献16

  • 1Truong B T, Venkatesh S, Dorai C. Automatic genre identification for content-based video categorization [C]// 15th International Conference on Pattern Recognition. Washington: IEEE Computer Society, 2000, 4: 230-233.
  • 2Yuan Y, Song Q B, Shen J Y. Automatic video classification using decision tree method [C]// Proceedings of the 1st International Conference on Machine Learning and Cybernetics. Beijing: IEEE Press, 2002, 3: 1 153-1 157.
  • 3Fischer S, Lienhart R, Effetsberg W. Automatic recognition of film genres[C]//Proceedings of the 3rd ACM International Conference on Multimedia. New York: ACM Press, 1995: 295-304.
  • 4Takagi S, Hattori S, Yokoyama K, et al. Sports video categorizing method using camera motion parameters [C]// Proceedings of the International Conference on Multimedia & Expo. Washington: IEEE Computer Society, 2003, 2: 461-464.
  • 5Rasheed Z, Sheikh Y, Shah M. On the use of computable features for film classification [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(1): 52-64.
  • 6Yuan X, Lai W, Mei T, et al. Automatic video genre categorization using hierarchical SVM [C]// IEEE International Conference on Image Processing. Atlanta: IEEE Press, 2006: 2 905-2 908.
  • 7Tong S, Chang. E Support vector machine active learning for image retrieval [C]// Proceedings of the 9th ACM International Conference on Multimedia. Ottawa, Canada: ACM Press, 2001, 9: 107-118.
  • 8Tong S. Active learning: theory and applications[D]. Ph. D. dissertation, Stanford University, 2001.
  • 9Brinker K. On multiclass active learning with support vector machines [C]// Proceedings of European Conference on Artificial Intelligence. 2004: 969-970.
  • 10Yan R, Yang J, Hauptmann A. Automatically labeling video data using multi-class active learning [C]// Proceedings of the 9th IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2003, 1: 516-523.

同被引文献190

引证文献21

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部