期刊文献+

n-维可测函数的本性定理 被引量:4

The natural disposition theorem on n-dimension measurable function
下载PDF
导出
摘要 将一维勒贝格可测集的全密点定义推广到n-维可测集,将一维空间的函数间断度概念、相对间断度概念推广到n-维空间;根据全密点定义,利用n-维维他利覆盖定理与鲁金定理直接证明`n-维勒贝格可测集几乎所有的点都是全密点;由函数间断度与相对间断度概念得到n-维勒贝格可测函数与一个几乎处处连续的函数几乎处处相等的结论. The definition of the entire dense spot of Lebesgue measurable set was generalized from 1- dimension to n-dimension, so did the concept of the degree and the relative degree of the discontinuity of function, according to the definition of the entire dense spot, the almost every point of n -dimension Lebesgue measurable set being the entire dense spot was directly proved by Vitali cover and Lusin theorem, that ndimension Lebesgue measurable function was almost everywhere equal to an almost everywhere continuous function, which was gotten by the conception of the degree and the relative degree of the discontinuity of function.
作者 戚民驹
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第3期13-15,共3页 Journal of Anhui University(Natural Science Edition)
关键词 n-维正方体族 维他利覆盖 可测集 可测函数 几乎处处连续 几乎处处相等 n- dimension cube family Vitali cover measurable set measurable function almost everywhere continuous almost everywhere equal
  • 相关文献

参考文献4

二级参考文献4

  • 1[1]吴顺唐.离散数学[M].上海:华东师范大学出版社,1999.
  • 2[5]齐维声.离散数学[M].西安:西安电子科技大学出版社,2004:123-125.
  • 3戚民驹.断度概念与积分.高等数学通报,2001,39(1):2-8.
  • 4戚民驹.关于几乎处处连续的本性函数的可积性问题[J].上海师范大学学报(自然科学版),2004,33(1):32-38. 被引量:4

共引文献10

同被引文献15

  • 1戚民驹.关于勒贝格可测函数的再认识[J].上海电机学院学报,2007,10(1):74-77. 被引量:6
  • 2Olav Kallenberg. Foundations of Modem Probability[M].北京:科学出版社,2006:19.
  • 3Kallenberg O.Foundations of modern probability[M].2nd ed.北京:科学出版社,2006:24-25.
  • 4戚民驹.几乎处处绝对连续函数与微积分基本公式的充要条件.上海师范大学学报:自然科学版,2005,34(6):32-38.
  • 5戚民驹.断度概念与积分.高等数学通报,2001,39(1):2-8.
  • 6PETRUSKA G, LACZKOVICH M. A theorem on approximately continuous functions [ J ]. Acta Mathematica Hungarica, 1973,24 (3/4) : 383-387.
  • 7MACHERAS N D, STRAUSS W. Various products for Lebesgue densities [ J ]. Positivity, 2010,14 ( 4 ) : 815-829.
  • 8KVRKA O. Optimal quality of exceptional points for the Lebesque density theorem [ J ]. Acta Mathematica Hungarica, 2012, 134 ( 3 ) : 209-268.
  • 9SZENES A. Exceptional points for Lebesgue's density theorem on the real line [ J ]. Advances in Mathematics, 2011,226 ( 1 ) : 764- 778.
  • 10戚民驹.收敛函数列的一个性质[J].安徽大学学报(自然科学版),2008,32(2):8-11. 被引量:6

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部