期刊文献+

一种改进的无参数自组织映射算法

An improved parameterless self-organization map algorithm
下载PDF
导出
摘要 通过允许映射对没有被较好映射的输入作较大的调整,无参数自组织映射(PLSOM)能够快速而正确地适应新的输入范围,但是输入分布与权密度之间对应性较差.论文提出了一种基于PLSOM的改进算法.在两种不同的情况下采用两种不同的权值更新方法.一种采用修改过的PLSOM,另一种则采用改进过的SOM.实验结果表明,这种改进算法不仅能快速正确地适应新的输入范围,而且能较好地体现输入分布. By allowing the map to make large adjustments in response to inputs that were not well mapped, the parameterless self-organization map (PLSOM) could adapt correctly to the new input range quickly, but that came at the cost of lower correspondence between the input distribution and the weight density. In the paper, an imoroved algorithm was proposed based on the PLSOM. Two different weight updating methods were used in two different cases. The modified PLSOM was used in one case, and the improved SOM in another case. The experimental results showed that the imoroved algorithm could not adapt correctly to the new input range quickly, but also reflected the input distribution quite well.
作者 周向东
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第3期27-30,共4页 Journal of Anhui University(Natural Science Edition)
关键词 SOM PLSOM BMU 输入分布 权值密度 SOM PLSOM BMU input distribution weight density
  • 相关文献

参考文献6

  • 1Kohonen T. Self-organizing Maps[ M ]. Berlin : Springer-Verlag, 1995.
  • 2Kohonen T. The self-organizing map[ J]. Proceedings of the IEEE, 1990,78 (9) :1464 - 1480.
  • 3Ritter H, Martinetz M, Schulten K. Neural computation and self-organization maps: an introduction [ M ]. Reading, MA : Addison-Wesley, 1992.
  • 4Berglund E,Sitte J. The parameterless self-organization map algorithm [ J ]. IEEE Transactions on Neural Networks, 2006,17(2) :305 -316.
  • 5Bauer H U, Pawelzik K. Quantifying the neighbourhood preservation of self-organizing feature maps [ J ]. IEEE Transactions on Neural Networks, 1992,3 (4) :570 - 579.
  • 6Villmann T, Der R, Herrmann M, et al. Topology preservation in self-organizing feature maps:exact definition and measurement[J].IEEE Transactions on Neural Networks, 1997,8 ( 2 ) : 256 - 266.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部