期刊文献+

AlN/Si(111)复合衬底上4H-SiC薄膜的异质外延

Heteroepitaxial 4H-SiC Films Growth on AlN/Si(111) Composite Substrates
原文传递
导出
摘要 利用化学气相淀积(CVD)的方法在AlN/Si(111)复合衬底上成功实现了4H-SiC薄膜的异质外延生长,用X射线衍射(XRD)、扫描电子显微镜(SEM)、阴极荧光(CL)等方法对所得样品的结构特征、表面形貌和光学性质进行了表征测量。XRD测量结果显示得到的SiC薄膜的晶体取向单一;室温CL结果表明所得SiC薄膜为4H-SiC,且随着生长温度的升高,SiC薄膜的CL发光效率提高。生长温度、反应气源中C/Si比等工艺参数对SiC薄膜的外延生长及其性质影响的研究表明在AlN/Si(111)复合衬底上外延4H-SiC的最佳衬底温度为1230~1270℃比通常4H-SiC同质外延所需的温度低200~300℃;较为合适的C/Si比值为1.3。 The 4H-SiC films heteroepitaxially deposited on AlN/Si(111) substrates by chemical vapor deposition (CVD) are investigated in this work. X-ray diffraction (XRD), scanning electron microscope (SEM) and cathode illumination (CL) are used to analyze the structure characters, surface morphology and optics properties of the samples. The XRD spectrum shows that the SiC films have single (0006) orientation. The CL spectra indicates that the type of the prepared SiC films is 4H, and the CL efficiency of SiC films enhances with the increase of the growth temperature. It is found that lower substrate temperature is not beneficial for Si and C atoms to select the proper sites, leading to poor crystalline quality. While higher substrate temperature enhances the etching effect of H2 and desorption of absorbed atoms, which goes against the film growth. In addition, the ratio of C/Si influences on the growth of SiC as well. Excess Si results droplets on the surface, while excess C causes Si vacancies in the material. From these experiments, we point out that the preferred substrate temperature for 4H-SiC heteroepitaxy is between 1230℃ and 1270℃, the proper ratio of C/Si equals to 1.3.
出处 《中国激光》 EI CAS CSCD 北大核心 2009年第5期1209-1213,共5页 Chinese Journal of Lasers
基金 国家973计划(2006CB604907) 高等学校博士学科点专项科研基金(20050284004) 国家自然科学基金(60721063)资助课题
关键词 化学气相淀积 4H—SiC薄膜 AlN/Si(111)复合衬底 异质外延 阴极荧光 chemical vapor deposition 4H-SiC film AlN/Si(111) composite substrate heteroepitaxy cathod illumination
  • 相关文献

参考文献12

  • 1吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生,徐至展.飞秒激光在6H SiC晶体表面制备纳米微结构[J].光学学报,2007,27(1):105-110. 被引量:10
  • 2G. Wagner, J. Doerschel, A. Gerlitzke et al.. Surface preparation of 4H-SiC substrates for hot-wall CVD of SiC layers[J]. Appl Surface Science, 2001, 184: 55-59
  • 3G. Dufour, F. Rochet, G. Fischer et al.. SiC formation by reaction of Si(001) with acetylene: electronic structured and growth mode[J]. Phys. Rev. B, 1997, 56: 4266-4270
  • 4朱京涛,张淑敏,王蓓,吴文娟,李存霞,徐垚,张众,王风丽,王占山,陈玲燕,周洪军,霍同林.30.4nm波长SiC/Mg多层膜反射镜[J].光学学报,2007,27(4):735-738. 被引量:10
  • 5Yu Melnik, D. Tsvetkov, A. Pechnikov et al.. Characterization of AlN/SiC epitaxial wafers fabricated by hydride vapor phase epitaxy[J]. Phys. Stat. Sol. A, 2001, 188: 463-466
  • 6T. L. Chu, R. B. Campbell. Chemical etching of silicon carbide with hydrogen[J]. J. Electrochem. Soc., 1965, 112: 955-958
  • 7H. J. Kim, R. F. Davis. Theoretically predicted and experimentally determined effects of the Si/(Si+C) gas phase ratio on the growth and character of monocrystalline beta silicon carbide films[J]. J. Appl. Phys., 1986, 60: 2897-2902
  • 8Mark D. Allendorf, Robert J. Kee. A model of silicon carbide chemical vapor deposition[J]. J. Electrochem. Soc., 1991, 138: 841-848
  • 9P. Lu, J. H. Edgar, O. J. Clembocki et al.. High-speed homoepitaxy of SiC from methyltrichlorosilane by chemical vapor deposition[J]. J. Crystal Growth, 2005, 285: 506-511
  • 10A. B. Chen, P. Srichaikul. Self-assembled visible-bandgap Ⅰ-Ⅵ quantum dots[J]. Phys. Stat. Sol. B, 1997, 202: 817-821

二级参考文献27

  • 1徐荣青,陈笑,陈建平,沈中华,陆建,倪晓武.激光烧蚀水下金属产生冲击波和空泡效应的研究[J].光学学报,2004,24(12):1643-1648. 被引量:7
  • 2张众,王占山,王风丽,吴文娟,王洪昌,秦树基,陈玲燕.Design and fabrication of broad angular range depth-graded C/W multilayer mirror for hard X-ray optics[J].Chinese Optics Letters,2005,3(7):422-424. 被引量:2
  • 3满宝元,王象泰,胡燮荣,许炳章.激光烧蚀金属表面产生的发射光谱分析[J].光学学报,1997,17(2):161-165. 被引量:10
  • 4Milton Birnbaum. Semiconductor surface damage produced by ruby laser[J]. J. Appl. Phys. , 1965, 36:3688
  • 5N. R. Isenor. CO2 laser-produced ripple patterns on NixP1-x surfaces[J]. Appl. Phys. Lett. , 1977, 31(3): 148
  • 6H. M. van Driel, J. E. Sipe, Jeff F. Young. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Phys. Rev. Lett., 1982, 49(26): 1955
  • 7Zhou Guosheng, P. M. Fauchet, A. E. Siegman. Growth of spontaneous periodic surface structures on solids during laser illumination[J]. Phys. Rev. B, 1982, 26(10): 5366
  • 8A. M. Ozkan, A. P. Malshe, T. A. Railkar et al.. Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters[J].Appl. Phys. Lett., 1999, 75(23) : 3716
  • 9Qihong Wu, Yurong Ma, Rongchuan Fang et al.. Femtosecond laser induced periodic surface structure on diamond film[J].Appl. Phys. Lett. , 2003, 82(11):1703
  • 10A. Borowiec, H. K. Haugen. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J].Appl. Phys. Lett. , 2003, 82(26):4462

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部