期刊文献+

一种机载合成孔径激光雷达相位误差补偿方法 被引量:3

Phase Errors Compensation in Airborne Synthetic Aperture Ladar Data Processing
原文传递
导出
摘要 准确理解大气湍流扰动相位对光束传输特性的影响机制,并以此为基础发展有效的相位误差补偿算法是实现合成孔径激光雷达(SAL)高质量成像的关键之一。从激光光束的相位结构函数入手,提出了一种新的大气湍流相位屏产生方法——结构函数法,建立了满足Kolmogorov统计规律的大气湍流数值模型,计算了不同强度湍流作用下机载SAL的成像结果。通过将其与秩一相位估计法联合使用,克服了秩一法对初始值敏感的缺点,提高了补偿算法的精度和效率。实验表明,与谱反演法相比,结构函数法的计算结果更接近于理论值,同时计算复杂度由O(N^2)降至O(N)。改进的秩一法能够较为有效地改善一定强度范围内大气湍流引起的SAL图像失真,而且补偿后图像的信噪比相比传统的秩一法提高了大约5 dB,计算时间也缩短了约30%。 Accurately understanding the effects of phase fluctuation on the laser beam propagation through the atmospheric turbulence, and then making an effective wavefront correction will improve the imaging ability of practical synthetic aperture ladar systems. Based on the phase structure function of laser beam, the structure-function method for generating phase screens is presented, by which the Kolmogorov turbulence of different strength is numerically simulated to investigate its distortion on SAL imaging ability. By combining it with the rank one phase estimation (ROPE) algorithm, improvement of both accuracy and efficiency can be obtained by overcoming the weakness that ROPE is sensitive to initial value. Experiments show that the simulating results by structure function method, will be much closer to the theoretical value than that by spectrum method, and computational complexity will also be reduced from O(N2) to O(N). At the same time, image distortion induced by atmospheric turbulence within a certain intensity range can be restored by the modified ROPE algorithm. Compared with the traditional ROPE, compensation results by the modified method can have a 5 dB signal-to-noise ratio improvement, and computing time can be cut down by 30%.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第5期1149-1154,共6页 Acta Optica Sinica
关键词 大气光学 合成孔径激光雷达 结构函数法 大气湍流 相位屏 atmospheric optics synthetic aperture ladar structure-function method atmospheric turbulence phase screen
  • 相关文献

参考文献12

  • 1Steven M. Beck, Joseph R. Buck, Walter F. Buell et al.. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Appl. Opt.. , 2005, 44:7621-7629
  • 2T. J. Karr. Synthetic aperture ladar resolution through turbulence[C]. SPIE, 2003, 4976:22-33
  • 3刘立人.合成孔径激光成像雷达(Ⅰ):离焦和相位偏置望远镜接收天线[J].光学学报,2008,28(5):997-1000. 被引量:47
  • 4刘立人.合成孔径激光成像雷达(Ⅱ):空间相位偏置发射望远镜[J].光学学报,2008,28(6):1197-1200. 被引量:36
  • 5彭仁军,吴健,杨春平,陈长庚.用干涉法实现光学合成孔径技术[J].光学学报,2002,22(3):355-359. 被引量:18
  • 6Zhili Hua, Hongping Li, Yongjian Gu. Atmosphere turbulence phase compensation in synthetic aperture ladar data processing[C]. SPIE, 2007, 6787:678724-1-678724-7
  • 7C. M. Harding, R. A. Johnston, R. G. Lane et al.. Fast simulation of a Kohnogorov phase screen[J].Appl. Opt. , 1999, 38(11):2161-2170
  • 8R. G. Lane, A. Glindemann, J. C. Daintyet al.. Simulation of a Kolmogorov phase screen[J].Waves in Radndom Media, 1992, 2:209-224
  • 9Noll R J. Zernike polynomials and atmospheric turbulence[J].J. Opt. Sco. Am. , 1976, 66(3): 207-211
  • 10Wahl D E, Eichel P H, Ghiglia D C et al. Phase gradient autofocus A robust tool for high resolution SAR phase correcton[J].IEEE Trans. Aerospace and Electronic Systems, 1994, 30(3): 827-834

二级参考文献20

  • 1刘立人.卫星激光通信 Ⅱ地面检测和验证技术[J].中国激光,2007,34(2):147-155. 被引量:32
  • 2M. Bashkansky, R. L. Lucke, F. Funk et al.. Two-dimensional synthetic aperture imaging in the optical domain[J]. Opt. Lett. , 2002, 27(22): 1983-1985
  • 3S. M. Beck, J. R. Buck, W. F. Buell et al.. Synthetic-aperture imaging ladar: laboratory demonstration and signal processing [J]. Appl. Opt., 2005, 44(35): 7621-7629
  • 4J. Ricklin, M. Dierking, S. Fuhrer et al.. Synthetic aperture ladar for tactical imaging[C]. DARPA Strategic Technology Office
  • 5J. D. Gaskill. Linear Systems. Fourier Transforms, and Optics [M]. New York: John Wiley & Sons, Inc. , 1978
  • 6M. Bas-hkansky, R. L. Lucke, F. Funket al.. Two dimensional synthetic aperture imaging in the optical domain[J]. Opt. Lett , 2002, 27(22) : 1983-1985
  • 7S. M. Beck, J. R. Buck, W. F. Buellet al.. Synthetic-aperture imaging ladar: laboratory demonstration and signal processing [J]. Appl. Opt. , 2005, 44(35): 7621-7629
  • 8J. Ricklin, M. Dierking, S. Fuhrer et al.. Synthetic aperture ladar for tactical imaging[C]. DARPA Strategic Technology Office
  • 9A. Ghatak. Optics [ M]. New Delhi.. Tata McGraw-Hill Publishing Co. Ltd. , 1977
  • 10J. D. Gaskill. Linear Systems. Fourier Transforms, and Optics [M]. New York: John Wiley & Sons, Inc. , 1978

共引文献71

同被引文献33

  • 1黄印博,王英俭.跟踪抖动对激光湍流大气传输光束扩展的影响[J].光学学报,2005,25(2):152-156. 被引量:25
  • 2易修雄,郭立新,吴振森.高斯波束在湍流大气斜程传输中的闪烁问题研究[J].光学学报,2005,25(4):433-438. 被引量:21
  • 3李番,邬双阳,郑永超,杨红果.合成孔径激光雷达技术综述[J].红外与激光工程,2006,35(1):55-59. 被引量:41
  • 4陈云波,唐波,王丽娜,张明东.合成孔径激光雷达频率稳定性问题研究[J].电波科学学报,2006,21(6):975-978. 被引量:6
  • 5R. B. Holmes, T. J. Brinkley. Reconstruction of images of deep space objects using Fourier telescopy[C]. SPIE, 1999, 3815:11-22.
  • 6Peter Alekseevich Bakut. Theoretical studies of Fourier telescopy for deep space imaging[R]. International Information Academy, Moscow, 1999. 1-44.
  • 7K. R. MacDonald, J. K. Boger, M. Fetrow el al.. An experimental demonstration of Fourier telescopy [C]. SPIE, 1999, 3815:23-29.
  • 8Mathis J. , Stapp J. , Cullar E. L. et al.. Field experiment performance of the receiver elements for a Fourier telescopy imaging system[C]. SPIE, 2005, 5896(0F) : 114-125.
  • 9Stapp J. , Spivey B. , Chen L. et al.. Simulation of a Fourier telescopy imaging system for object in low earth orbit[C]. SPIE, 2006, 6307(01) :1-11.
  • 10Stapp J. , Cuellar E. L. , Spivey B. et al.. Dynamic simulation of a multiple beam Fourier telescopy imaging system [ C ]. TELESCOPY & SENSORS, AMOS Conference, 2006. 162-170.

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部