期刊文献+

聚合物光子晶体波导中慢光传输的电光动态调制 被引量:6

Tunable Slow Light by Electro-Eptic Effect in Polymer Photonic Crystal Waveguide
原文传递
导出
摘要 全光缓存器是未来全光网络中不可或缺的关键器件。针对可控光延迟和光存储的应用需求,研究了光子晶体波导中慢光传输的外部动态调制。设计了一种新型的聚合物光子晶体波导结构。用平面波展开法仿真得到该波导结构带隙中存在单一的TE导模,导模带边处的群速度可达10^(-2)c。由于基底聚合物材料具有高电光系数和瞬态的电光响应时间,且导模慢光传输产生的电磁场局域对电光效应有增强作用,可在低调制电压的条件下实现对慢光导模的大范围动态调制。数值分析得到在外加调制电压为80 V时导模带边波长的移动幅度达80.8 nm。慢光导模的移动随调制电压的变化基本呈线性关系,且调制的灵敏度约为1 nm/V。这种线性的外部动态调制基本可满足全光网络对慢光光缓存的需求。 All-optical buffers have been considered as essential components for all-optical communications. Considering the requirements of controllable optical delay lines and optical buffers, the external dynamic tuning of slow light in photonic crystal waveguides has been studied. A novel photonic crystal waveguide on polymer substrate is proposed. Numerical study using plane, wave expansion method shows that this structure supports a single guided mode transmission,which allows a low group velocity of 10-2c in the vicinity of band edge. Since the substrate material possesses a high electro-optic coefficient and a subpicosecond nonlinear response time, and local field effect induced the by slow light transmission can enhance electro-optic effect greatly, these properties offer the opporunity to tune the slow light mode in wide frequency range with low power. Numerical analysis shows that by applying an external voltage of 80 V, the guided mode will shift 80.8 nm, and moreover the wavelength shift is nearly linearly increased with the increas of applied modulated voltage. Modulation sensitivity is about 1 nm/V. The flexible dynamical tuning of slow light mode can meet the requirements for the use of optical buffer in all-optical network in principle.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第5期1374-1378,共5页 Acta Optica Sinica
基金 国家自然科学基金(60707001 60711140087) 国家973计划(2007CB310705) 国家863计划(2007AA012247) 新世纪优秀人才计划(NCET-07-0110) 教育部"长江学者和创新团队发展计划"(IRT0609) 科技部国际合作计划(2006DFA11040)资助项目
关键词 光子晶体波导 动态调制 平面波展开法 聚合物 慢光 photonic crystal waveguide dynamic tuning plane-wave expansion method polymer slow light
  • 相关文献

参考文献20

  • 1T. F. Krauss. Slow light in photonic crystal waveguides[J]. J. Phys. D: Appl. Phys.,2007,40: 2666-2670
  • 2Toshihiko Baba, Daisuke Mori. Potential of slowlight in photonic crystal[C].SPIE, 6351: 63511Z-1-63511Z-9
  • 3D. J. Gauthier, A. L. Gaeta, R. W. Boyd. Slow light: from basics to future prospects[J]. Photonics Spectra, March, 2006: 44-50
  • 4Y. A. Vlasov, M. O’Boyle, H F. Hamann et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65-69
  • 5Alex Figotin, Ilya Vitebskiy. Slow light in photonic crystals[J]. Waves in Random and Complex Media, 2006, 6(3)293-382
  • 6梁卿昌,王海华,蒋占魁.Eu^(3+)∶Y_2SiO_5晶体中电磁感应透明及群速度减慢研究[J].光学学报,2007,27(5):946-950. 被引量:15
  • 7M. Svaluto Moreolo, V. Morra, G. Cincotti. Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides[J]. J. Opt. A: Pure Appl. Opt. 2008, 10, 064002-1-064002-6
  • 8M. D. Settle, R. J. P. Engelen, M. Salib et al.. Flatband slow light in photonic crystals featuring spatial pulse compression and Terahertz bandwidth[J]. Opt. Express, 2007, 15(1): 219-226
  • 9DaisukeMori, Toshihiko Baba. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Opt. Express, 2005,13(23): 9398-9408
  • 10M. T. Tinker, J-B. Lee. Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency[J]. Opt. Exp., 2005,13(8): 7174-7188

二级参考文献57

共引文献24

同被引文献48

  • 1Lü ShuYuan, ZHAO JianLin & ZHANG Dong Institute of Optical Information Science and Technology, Shanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China.Design and analysis of a wideband photonic crystal waveguide with low group-velocity and low dispersion[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):481-485. 被引量:4
  • 2张浩,赵建林,张晓娟,底楠.二维磁性光子晶体及其模场分析[J].物理学报,2007,56(6):3546-3552. 被引量:4
  • 3Chen Kuan Yu, Chang Yung Ting, Ho Yu Hsuanet al.. Emitter apodization dependent angular luminance enhancement of microlens array film attached organic light-emitting devices[J]. Opt. Express, 2010, 18(4): 3238-3243.
  • 4D. Kuang, X. Zhang, M. Guiet al.. Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outeouplingefficiency[J]. Appl. Opt. , 2009, 48(5): 974-978.
  • 5Chen Sihai, Yi Xinjian, Kong I.inbing et al.. Monolithic integration technique for microlens arrays with infrared focal plane arrays[J]. Infrared Physics : Technology, 2002, 43(2): 109-112.
  • 6Qionghua Wang, Huan Deng, Tiantian Jiao et al.. Imitating micro lens array for integral imaging[J]. Chin. Opt. Lett., 2010, 8(5): 512-514.
  • 7Feng Zhao, Mingwei Zhu, Peng Zhan. Microlens arrays prepared via colloidal microsphere templating[J]. Chin. Opt. Lett. , 2010, 8(5): 508-511.
  • 8Http://www. Microchero. Com/products/pdf/su 82000datasheet2000_ 5thru2015ver4. Pdf.
  • 9J. H. Li, D. Chen, J. Y. Zhanget al.. Indirect removal of SU- B photoresist using PDMS technique[J].Sensors and Actuators a-Physical, 2006, 125(2) : 586-589.
  • 10张文富,方强,程益华,刘继红,夏贵进.正负折射率交替一维光子晶体窄带梳状滤波器[J].光学学报,2007,27(9):1695-1699. 被引量:28

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部