摘要
基于变量离散化思想,将衍射积分转化为矩阵乘法运算,为一维衍射问题的计算提供了一种简单的数值计算方法.以等栅距振幅型光栅、等栅距相位型光栅、变栅距相位型光栅为例,分别计算了它们的衍射光强分布,计算结果与解析解的结果一致,表明此方法可以方便地计算一维复杂光栅的衍射场分布.
A matrix multiplication method is proposed to calculate the Fresnel diffraction integral, which gives an easy way to numerically calculate the one-dimensional (1D) diffraction problems. Several different kinds of 1D gratings are calculated as examples. The calculated results show that this method is feasible for analyzing the diffraction property of complicated 1 D grating.
出处
《大学物理》
北大核心
2009年第5期52-55,65,共5页
College Physics
基金
北京师范大学本科生科学研究基金项目资助
关键词
数值计算
光栅
衍射
矩阵
numerical calculation
grating
diffraction
matrix