期刊文献+

微通道反应器微观混合效率的实验研究 被引量:10

An experimental study of the micromixing efficiency in microchannel reactors
下载PDF
导出
摘要 采用碘化物-碘酸盐体系作为平行竞争反应体系,利用化学探针法对Y型和T型微通道反应器的微观混合性能进行了研究。实验探讨了反应物浓度、体积流量、体积流量比等条件对微通道反应器微观混合效率的影响。结果表明,不同结构的微通道反应器有不同的H+浓度范围,Y型微通道为0.02~0.06mol/L;T型微通道为0.06~0.08mol/L。此外,反应物浓度的减小(尤其是关键组分H+浓度的减小),体积流量的增大及体积流量比的减小均有利于微观混合效率的改善;小流量下,T型微通道的微观混合效率明显优于Y型,但当体积流量增大到一定值时,两种微通道反应器的微观混合性能基本相当。 Abstract: The micromixing efficiencies in Y-type and T-type microchannel reactors were studied by using the iodide-iodate parallel competing reaction system. The effects of varying reactant concentration, volume flow rate and volume flow ratio on the micromixing efficiency were investigated in detail. The experimental results indicate that the most sensitive hydrogen ion concentration range for measurements is different: 0.02- 0.06 mol/L for the Y-type microchannel and 0.06- 0.08 mol/L for the T-type microchannel. Furthermore, the micromixing efficiency increases with the reduction in reactant concentration (especially the crucial H^+ concentration), and also increases with the increase in volume flow rate and the decrease in volume flow ratio. At a low volume flow rate, the T-type microchannel has a much better micromixing performance than the Y-type. However at a high volume flow rates, the two microchannel reactors have similar excellent micromixing efficiencies.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期1-5,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家"863"计划(2007AA030207) 国家自然科学基金(20806004)
关键词 微通道 反应器 微观混合 碘化物-碘酸盐体系 离集指数 microchannel reactor micromixing iodide-iodate segregation index
  • 相关文献

参考文献11

  • 1Hessel V, Lowe H, Stange T. Micro chemical processing at IMM-from pioneering work to customer specific services[J]. Lab Chip, 2002, 2(1): 14-21.
  • 2Jensen K F. Microreaction engineering-is small better? [J]. Chem Eng Sci, 2001, 56(2): 293-303.
  • 3Jahniseh K, Hessel V, Lowe H, et al. Chemistry in microstructured reactors [ J ]. Angew Chem Int Ed, 2004, 43(4): 406 - 446.
  • 4Wagner J, Kohler J M. Continuous synthesis of gold nanoparticles in a microreactor[J]. Nano Lett, 2005, 5 (4): 685- 691.
  • 5Nie Z H, Xu S Q, Seo M, et al. Polymer particles with various shapes and morphologies produced in continuous microfludic reactors [ J ]. J Am Chem Soc, 2005, 127 (22) : 8058 - 8063.
  • 6Song Y J, Doomes E E, Prindle J, et al. Investigation into sulfobetaine-stabilized Cu nanoparticles formation. Toward development of a mierofluidie synthesis [J ]. J Phys Chem B, 2005, 109(19):9330 - 9338.
  • 7Chen G G, Luo G S, Li S W, et al. Experimental approaches for understanding mixing performance of a minireactor[J ]. AIChE J, 2005, 51( 11 ) : 2923 - 2929.
  • 8Bourne J R. Mixing and the selectivity of chemical reactions[J]. Org Process Res Dev, 2003, 7(4) : 471 - 508.
  • 9Chen J F, Zheng C, Chen G T. Interaction of macro-and micromixing on particle size distribution in reactive precipitation[J]. Cbem Eng Sci, 1996, 51 (10) : 1957 - 1966.
  • 10Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency-experimental approach[J]. Chem Eng Sci, 1996, 51(22): 5053 ~ 5064.

同被引文献158

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部