期刊文献+

Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor 被引量:5

Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor
原文传递
导出
摘要 The effects of temperature on a surface plasmon studied experimentally and theoretically. SPR resonance (SPR) sensor in Kretschmann configuration are experiments are carried out over a temperature range of 278- 313 K in steps of 5 K. A detailed theoretical model is provided to analyze the variation of performance with varying temperature of the sensing environment. The temperature dependence of the properties of the metal, dielectric, and analyte are studied, respectively. The numerical results indicate that the predictions of the theoretical model are well consistent with the experiment data. The effects of temperature on a surface plasmon studied experimentally and theoretically. SPR resonance (SPR) sensor in Kretschmann configuration are experiments are carried out over a temperature range of 278- 313 K in steps of 5 K. A detailed theoretical model is provided to analyze the variation of performance with varying temperature of the sensing environment. The temperature dependence of the properties of the metal, dielectric, and analyte are studied, respectively. The numerical results indicate that the predictions of the theoretical model are well consistent with the experiment data.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第5期428-431,共4页 中国光学快报(英文版)
基金 supported by the National "973" Program of China (No.2006CB302905) the Key Program of National Natural Science Foundation of China (No.60736037) the National Natural Science Foundation of China (No.10704070) the National "863" Program of China (No.2007AA06Z420) the Science and Technological Fund of Anhui Province for Outstanding Youth(No.08040106805)
关键词 PLASMONS SENSORS TEMPERATURE Thermal effects Plasmons Sensors Temperature Thermal effects
  • 相关文献

参考文献15

  • 1J. Homola, S. S. Yee, and G. Gauglitz, Sensors and Actuators B 54, 3 (1999).
  • 2H. Y. Lin, W. H. Tsai, Y.-C. Tsao, and B. C. Sheu, Appl. Opt. 46, 800 (2007).
  • 3Y.-C. Kim, W. Peng, S. Banerji, and K. S. Booksh, Opt. Lett. 30, 2218 (2005).
  • 4K. Mitsui, Y. Handa, and K. Kajikawa, Appl. Phys. Lett. 85, 4231 (2004).
  • 5L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 6, 2060 (2006).
  • 6S.-Y. Wu and H.-P. Ho, Chin. Opt. Lett. 6, 176 (2008).
  • 7X. Yang and D. Liu, Chin. Opt. Lett. 5, 563 (2007).
  • 8H.-P. Chiang, Y.-C. Wang, P. T. Leung, and W. S. Tse, Opt. Commun. 188, 283 (2001).
  • 9K.-Q. Lin, L.-M. Wei, D.-G. Zhang, R.-S. Zheng, P. Wang, Y.-H. Lu, and H. Ming, Chin. Phys. Lett. 24, 3081 (2007).
  • 10The International Association for the Properties of Water and Steam, "Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure" (IAPWS, Erlangen, 1997) p.2.

同被引文献25

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部