期刊文献+

随机选择最优个体的量子粒子群优化算法 被引量:4

Quantum-behaved particle swarm optimization algorithm with random selection of optimal individual
下载PDF
导出
摘要 在分析量子行为粒子群优化算法的基础上,针对算法后期粒子群体容易聚集到一个狭小搜索区域,群体多样性降低的问题,提出了在算法中引入随机选择最优个体的改进方法,提高算法搜索过程中粒子群体的多样性。将改进后的量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较,仿真结果表明改进后的算法更适合解决多峰类的优化问题。 The particles are easy to mass into a small search space in late stage and thus the diversity of swarms decline. Based on the analysis of quantum-behaved Particle Swarm Optimization (PSO) algorithm, a method of random selection of optimal individual was proposed to improve the diversity in searching progress. The of the improved QPSO was compared with the original PSO and the original QPSO using the testing function of the benchmark. Experimental results demonstrate that the improved QPSO is more suitable for resolving the multi-peak optimization problem.
出处 《计算机应用》 CSCD 北大核心 2009年第6期1554-1558,共5页 journal of Computer Applications
关键词 粒子群算法 量子行为 随机选择 最优个体 Particle Swarm Optimization (PSO) algorithm quantum behavior random selection optimal individual
  • 相关文献

参考文献12

  • 1COLONI A, DORIGO M, MANYIZZO V. Distributed optimization by ant colonies [ C]// Proceedings of Parallel Problem Solving from Nature ( PPSN). Pans, France: Elsevier, 1991 : 134 - 142.
  • 2KENNEDY J, EBERHART R. Particle swarm optimization [ C]// Proceedings of IEEE International Conference on Neural Network. Washington, DC: IEEE Press, 1995:1942-1948.
  • 3SUN J, FENG B, XU W B. Particle swarm optimization with parti- cles having quantum behavior [ C]// IEEE Proceedings of Congress on Evolutionary Computation. Washington, DC: IEEE Press, 2004: 325 - 331.
  • 4LIU J, XU W B, SUN J. Quantum-behaved particle swarm optimi- zation with mutation operator [ C]// Proceedings of IEEE Interna- tional Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Press, 2005:237-240.
  • 5SUN J, XU W B, FANG W. A diversity-guided quantum-behaved particle swarm optimization algorithm [ C]// Proceedings of IEEE international Conference on Simulated Evolution and Learning. Washington, DC: IEEE Press, 2006:497-504.
  • 6SHI Y , EBERHART R C . A modified particle swarm optimizer [C]// The 1998 IEEE International Conference on Evolutionary Computation Proceedings: IEEE World Congress on Computational Intelligence. Washington, DC: IEEE Press, 1998:69-73.
  • 7CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization [ C]// Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC: IEEE Press, 1999:1951 - 1957.
  • 8SUN J, XU W B, FANG W. Quantum-behaved particle swarm optimization algorithm with controlled diversity [ C]//International Conference on Computational Science, LNCS 3993. Berlin: Springer, 2006:847 - 854.
  • 9FANG W, SUN J, XU W B. Design IIR digital filters using quantum-behaved particle swarm optimization [ C]// International Conference on Natural Computation, LNCS 4222. Berlin: Springer, 2006:657-64.
  • 10SUN J, XU W B, FANG W. Solving multi-period financial planning problem via quantum-behaved particle swarm algorithm [ C]// ICIC 2006: International Conference on Intelligent Computing, LNCS 4114. Berlin: Springer, 2006:1158-1169.

同被引文献16

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2夏桂梅,曾建潮.基于锦标赛选择遗传算法的随机微粒群算法[J].计算机工程与应用,2007,43(4):51-53. 被引量:17
  • 3Kennedy J,Eberhart R. Particle swarm optimization[A]. Proc of Int'l Conf on Neural Networks[C]. Piscataway:IEEE Press,1995: 1942-1 948.
  • 4S. A. HAMDAN. Hybrid particle swarm optimiser using multi-neighborhood topologies[J]. Journal of Computer Science ,2008, (7):36-44.
  • 5Eberhart R,Kennedy J. A new optimizer using particle swarm theory[A]. Proc of Int'l Symposium on MicroMaehine and Human Seience[C]. Piscataway: IEEE Service Center, 1995:39-43.
  • 6K. E. Parsopoulos, M . N. Vrahatis. Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization[M]. Nature Computing Kluwer Academic Publishers,2002:235-306.
  • 7Kennedy J, Eberhart R. Particle swarm optimization [ A ]. Proc of Intl Conf on Neural Networks [ C ]. Piscataway : IEEE Press, 1995 : 1942 - 1948.
  • 8Eberhart R,Kennedy J. A new optimizer using particle swarm theory [ A]. Proc of Intl Symposium on MicroMachine and Human Science [ C ]. Piscataway : IEEE Service Center, 1995 : 39 - 43.
  • 9Shi Y, Eberhart R C. A Modified Particle Swarm Optimization [ C ] Proceedings of the Congress on Evolutionary Computation, Piscataway. IEEE Press, 1998:69 - 73.
  • 10Shi Y, Eberhart R. C Fuzzy Adaptive Particle Swarm Optimization. Proc. IEEE Conf. on Evolutionary Computational. Seoul, Korea,2001 : 101 - 106.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部