摘要
在分析量子行为粒子群优化算法的基础上,针对算法后期粒子群体容易聚集到一个狭小搜索区域,群体多样性降低的问题,提出了在算法中引入随机选择最优个体的改进方法,提高算法搜索过程中粒子群体的多样性。将改进后的量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较,仿真结果表明改进后的算法更适合解决多峰类的优化问题。
The particles are easy to mass into a small search space in late stage and thus the diversity of swarms decline. Based on the analysis of quantum-behaved Particle Swarm Optimization (PSO) algorithm, a method of random selection of optimal individual was proposed to improve the diversity in searching progress. The of the improved QPSO was compared with the original PSO and the original QPSO using the testing function of the benchmark. Experimental results demonstrate that the improved QPSO is more suitable for resolving the multi-peak optimization problem.
出处
《计算机应用》
CSCD
北大核心
2009年第6期1554-1558,共5页
journal of Computer Applications
关键词
粒子群算法
量子行为
随机选择
最优个体
Particle Swarm Optimization (PSO) algorithm
quantum behavior
random selection
optimal individual