期刊文献+

一种新的用于候选基因排序的数据融合方法

Novel data fusion method for candidate gene prioritization
下载PDF
导出
摘要 从成百上千的候选基因中确定关键基因是寻找致病基因(或参与某个生物过程的基因)的重要步骤,而根据多种数据源对候选基因进行综合排序则成为该领域新的挑战。提出一种新的基于单类支持向量机的数据融合方法用于候选基因排序。实验表明该方法可以有效地利用多种异构的生物数据源对候选基因排序,其准确率和鲁棒性均优于根据单数据源进行排序。 Identifying key candidates in the thousands of genes in a genome is an important step in hunting genes playing roles in a disease phenotype or a complex biological process, and candidate gene prioritization integrating kinds of data sources is becoming a new challenge in this field. A new data fusion method based on one-class Support Vector Machine (SVM) was proposed for candidate gene prioritization. Experimental results indicate that the proposed method is valid in gene prioritization integrating kinds of heterogeneous data sources and its accuracy and robustness are better than that of the method with single data source.
出处 《计算机应用》 CSCD 北大核心 2009年第6期1563-1565,1571,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(6077320660704047)
关键词 候选基因排序 数据融合 单类支持向量机 candidate gene prioritization data fusion one-class support vector machine
  • 相关文献

参考文献7

  • 1AERTS S, LAMBRECHTS D, MAiTY S, et al. Gene prioritization through genomic data fusion [ J]. Nature Biotechnology, 2006, 24 (5) : 537 - 544.
  • 2de BIE T, TRANCHEVENT L C, van OEFFELEN L M M, et al. Kernel-based data fusion for gene prioritization [ J]. Bioinformatics, 2007, 23(13) : 125 - 132.
  • 3PAVLIDIS P, WESTON J, CAI J S, et al. Learning gene functional classifications from multiple data types [ J]. Journal of Computational Biology, 2002, 9(2) : 401 - 411.
  • 4LANCKRIET G R G, DENG M, CRISTIANINI N, et al. Kernel-based data fusion and its application to protein function prediction in yeast [ C]// Pacific Symposium on Biocomputing. Hawaii, USA: World Scientific, 2004:300 - 311.
  • 5LANCKRIET G R G, de BIE T, CRISTIANINI N, et al. A statisti- cal framework for genomic data fusion [ J]. Bioinformatics, 2004, 20 (16) :2626 -2635.
  • 6LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming [ J]. Journal of Machine Learning Research, 2004, 5: 27 - 72.
  • 7SCHOLKOPF B, PLATY J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution [ J]. Neural Computation, 2001, 13(7) : 1443 - 1471.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部