期刊文献+

基于SIFT特征的人耳识别 被引量:3

Human ear recognition based on SIFT feature
下载PDF
导出
摘要 人耳的角度变化和遮挡是人耳识别中的难点问题,SIFT局部描述算子具有对图像尺度缩放、平移、旋转等的不变性,因此提出利用SIFT特征的人耳识别算法。该算法将人耳图像划分为相互重叠的网格区域,在每个子区域中计算SIFT的局部特征,再计算测试图像与训练图像的匹配相关度作为图像的全局特征,将SIFT的局部和全局特征相结合作为人耳识别的标准。通过在人耳库中的实验表明,此算法优于传统的全局方法,对于人耳角度变化和遮挡具有较好的鲁棒性,并且适用于单训练样本的情况。 The variety of ear angle and occlusion are the difficulties of ear recognition. The Scale Invariant Feature Transform (SIFT) is invariant to image scaling, translation and rotation. So the human ear recognition algorithm based on SIFT features was proposed. The SIFT features were computed from the ear image, and then image was divided into several overlapping grid regions, in which the local features of SIFT on each region are also computed. The matching similarity was computed between training image and test image, which was treated as global feature. The local feature and global feature were fused finally. The experiment results on ear database show that the algorithm works better than traditional global method, and is robust for the variety of ear angle and occlusion, and it is suitable for the recognition using the only one training sample.
出处 《计算机应用》 CSCD 北大核心 2009年第6期1690-1693,共4页 journal of Computer Applications
关键词 SIFT 人耳识别 局部描述子 Scale Invariant Feature Transform (SIFT) human ear recognition local descriptor
  • 相关文献

参考文献11

  • 1MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10) : 1615 - 1630.
  • 2LOWED G . Distinctive image features from sacle - invariant key points [ J]. International Journal of Computer Vision, 2004, 60(2) : 91 -110.
  • 3BICEGO M, LAGORIO A, GROSSO E, et al. On the use of SIFT features for face authentication [ C] //Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop. New York: IEEE Press, 2006:35 -35.
  • 4LUO J, MA Y, TAKIKAWA E, et al. Person-specific SIFT features for face recognition [ C] //IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu: IEEE Press, 2007: 593 - 596.
  • 5周志铭,余松煜,张瑞,杨小康.一种基于SIFT算子的人脸识别方法[J].中国图象图形学报,2008,13(10):1882-1885. 被引量:21
  • 6LOWED G. Object recognition from local scale-invariant features [C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Washington, DC: IEEE Press, 1999: 1150- 1157.
  • 7TURK M, PENTIAND A. Eigenfaces for recognition [ J]. Journal of Cognitive Neuroscience, 1991, 3(1) : 71 - 86.
  • 8KISKU D R, RATTANI A, GROSSO E, et al. Face identification by SIFT-based complete graph topology [ C] // IEEE Workshop on Automatic Identification Advanced Technologies. Alghero: IEEE Press, 2007:63 - 68.
  • 9YAN K, SUKTHANKAR R. PCA-SIFT: A more distinctive representation for local image descriptors [ C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Press, 2004:506 -513.
  • 10袁立,穆志纯,徐正光,刘克.基于人耳生物特征的身份识别[J].模式识别与人工智能,2005,18(3):310-315. 被引量:25

二级参考文献23

  • 1Zhang D. Automated Biometrics: Technologies and Systems.Boston, USA: Kluwer Academic Publishers, 2000.
  • 2Ross A, Jain K A. Multimodal Biometrics; An Overview. In:Proc of the 12th European Signal Processing Conference. Vienna, Austria, 2004, 1221-1224.
  • 3Iannarelli A. Ear Identification. In: Forensic Identification Series. Fremont, USA, Paramount Publishing Company, 1989.
  • 4Moreno B, Afinchez A, Ve1ez J F. Use Outer Ear Images for Personal Identification in Security Applications. In: Proc of IEEE 33rd Annual International Carnahan Conference on Security Technology. Madrid, Spain, 1999, 469-476.
  • 5Burge M, Burger W. Ear Biometrics in Computer Vision. In:Proc of the 15th International Conference of Pattern Recognition. Barcelona, Spain, 2000, 822-826.
  • 6Hurley J D, Nixon M S, Carter J N. Force Field Energy Functions for Image Feature Extraction. Image and Vision Computing, 2002, 20(5-6): 311-317.
  • 7Hurley J D, Nixon M S, Carter J N. A New Force Field Transform for Ear and Face Recognition. In: Proc of the IEEE International Conference on Image Processing. Vancover, Canada,2000, 25-28.
  • 8Hurley D J. Force Field Feature Extraction for Ear Biometrics.Ph. D Thesis. Department of Electronics and Computer Science,University of Southampton. Southampton, UK, 2001, 45-80.
  • 9Phillips P, Moon H, Rizvi S, Rauss P. The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104.
  • 10Chang K, Bowyer K W, Sarkar S, Victor B. Comparison and Combination of Ear and Face Images in Appearance-Based Biometrics. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1160-1165.

共引文献44

同被引文献28

  • 1丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 2HARRIS C, STEPHENS M. A combined comer and edge detector [ C]// Proceedings of the 4th Alvey Vision Conference. Manchester, UK: [s.n.],1988:147-152.
  • 3LINDEBERG T. Feature detection with automatic scale selection [ J]. International Journal of Computer Vision, 1998, 30(2) : 79 - 116.
  • 4BAUMBERG A. Reliable feature matching across widely separated views[ C]// Proceedings of the Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2000:774-781.
  • 5ABDEL-ttAKIM A E, FARAG A A. CSIFT: A SIFT descriptor with color invariant characteristics[ C]// Proceedings of Computer Vision and Pattern Recognition Conference. Washington, DC: IEEE Computer Society, 2006:1978 - 1983.
  • 6MORTENSEN E, DENG H, SHAPIRO L. A SIFT descriptor with global context[ C]//Proceedings of the 2005 IEEE Computer Soci- ety Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:184 -190.
  • 7WITKIN A P. Scale-space filtering[ C]// Proceedings of Interna- tional Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1983:1019 - 1022.
  • 8KOENDERINK J. The structure of images[ J]. Biological Cybernetics, 1984, 50(5):363-370.
  • 9LINDEBERG T. Scale-space theory: A basic tool for analyzing structures at different scales [ J]. Journal of Applied Statistics, 1994, 21(2): 224-270.
  • 10MIKOLCZYK K, TUYTELAARS T. A comparison of affine region detectors[ J]. International Journal of Computer Vision, 2005, 65 (1/2) :43 -72.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部