期刊文献+

一种基于离散频谱校正的SPIDER信号处理改进方法

Improved SPIDER signal processing method based on discrete spectrum correction
下载PDF
导出
摘要 介绍了光谱相位相干电场重构法(SPIDER)信号处理的原理,提出一种基于离散频谱校正的SPIDER信号处理改进方法,该方法可克服采样速率不足带来的信号处理误差。试验发现:在无噪声情况下,当取的校正点数足够多,基本可以达到无偏校正;而在有噪声的情况下,应适当选取校正的点数,来增强抗噪性能。该方法能在信噪比较差的情况下,得到时间延迟τ。经过仿真计算,在光谱仪最小分辨率和测量范围的限制情况下,该方法能够突破该限制在时谱上造成栅栏效应,大大提高SPIDER中时延参数的测量精度。该方法实现简单,精度高,抗噪性能好,无需改动设备就能提高系统精度,可广泛应用于SPIDER技术中。 The principle of SPIDER signal processing is introduced. An improved SPIDER signal processing method based on discrete spectrum correction is put forward. The signal processing error caused by the inadequate velocity of signal sampling can be overcome by the method. It is found in the testing that in the case of noiselessness, as the adequate correcting points are selected, the agonic correction can be basically achieved; in the case of noise, suitable correcting points should be selected to enhance the noise immunity. The time delay r can be obtained by the method while the signal-to-noise ratio is inferior. Through the simulation calculation, it can conquer the limit of the spectrometer minimum resolution and measurement range to bring about hurdle effect in the time spectrum, and to improve the measuring accuracy of the time-delay parameter of SPIDER. It is easy to realize the measurement, and can improve accuracy of the system without modification of the equipment. It can be used in the technology of SPIDER.
作者 熊飞 郑铮
出处 《应用光学》 CAS CSCD 北大核心 2009年第3期432-436,共5页 Journal of Applied Optics
基金 新世纪优秀人才支持计划项目 863计划(2006AA03Z310) 航空科学基金项目(2007ZC51044)
关键词 SPIDER 离散频谱校正 飞秒激光脉冲 能量重心法 SPIDER discrete spectrum correction femtosecond laser pulse energy centroid correction method
  • 相关文献

参考文献14

  • 1WILSON P T, JIANG Y, AKTSIPETROVO A , et al. Frequency-domain inter-ferometric second- harmonic spectroscopy [J]. Opt. Lett. , 1999, 24: 496-498.
  • 2KAPTEYN H,MURNANE M M. Ultrafast optics: life in the fast lane[J]. Phys. World, 1999, 12: 31- 35.
  • 3HOPKINS J M, SIBBETT J. Ultrashort-pulse lasers: Big payoffs in a flash[J]. Sci. Am. , 2000,283 (3):72-79.
  • 4SIDERS C W, Le BLANC S P, FISHER D ,et al. Laser wakefield excitation and measurement by femtosecond longitudinal interferometry [J]. Phys. Rev. Lett. ,1996,76(19):3570-3573.
  • 5KANE D J, TREBINO R. Characterization of arbitrary femtosecond pulses using frequency resolved optical gating [J]. IEEE J. Quantum Electron, 1993,29(2) :571-579.
  • 6IACONIS C ,WALMSLEY I A. Spectral phase interferometry for direct electric-field recon-struction of ultrashort optical pulses[J]. Opt. Lett., 1998, 23(10):792-794.
  • 7SHUMAN T M,ANDERSON M E,BROMAGE J. Real-time SPIDER: ultrashort pulse characterization at 20 Hz[J]. Opt. Exp. ,1999,5(6):134-143.
  • 8KORNELIS W, BIEGERT J, TISCH J W,et al. Singleshort kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction[J]. Opt. Lett. , 2003, 28(4) :281-283.
  • 9ANDERSON M E, De ARAUJO L E E,KOSIK E M,et al. The effects of noise on ultrashort-opticalpulse measurement using SPIDER[J]. Appl. Phys. B,2000,70(7) :S85-S93.
  • 10DORRER C, WALMSLEY I A. Accuracy criterion for ultrashort pulse characterization techniques: application to spectral phase interferometry for direct electric field reconstruction [J]. Opt. Soc. Am. B, 2002,19:1019-1029.

二级参考文献17

共引文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部