期刊文献+

一类具有年龄结构非自治种群模型零平衡解的全局渐近稳定性 被引量:1

Globally Asymptotic Stability of the Zero Equilibrium Solution to a Class of Non-autonomous Population Models with Age Structure
下载PDF
导出
摘要 讨论一类具有年龄结构且死亡率与种群总数有关的非线性非自治种群模型解的渐近性态,证明了解的存在唯一性并得到了零平衡解稳定和全局稳定的充分条件. The asymptotic behavior of a class of non-linear and non-autonomous population models with age structure is discussed. The mortality rate in this model depends on the total population size. The existence and uniqueness of solutions are proved, and the sufficient conditions for the stability and globally asymptotic stability of zero equilibrium solution are obtained.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期241-246,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 新疆维吾尔自治区高校科研计划重点资助项目(XJEDU2007I03)
关键词 年龄结构 稳定性 存在唯一性 age-structured stability existence and uniqueness
  • 相关文献

参考文献9

二级参考文献17

  • 1武玉英,赵丽霞.人口发展方程中的波动[J].系统工程理论与实践,1995,15(4):16-24. 被引量:5
  • 2李大潜.传染病动力学的一个偏微分方程模型[J].高校应用数学学报,1986,1(9):17-26.
  • 3郭宝珠,Acta Math Sci,1996年,16卷,3期,330页
  • 4马知恩,种群生态学的数学建模与研究,1996年
  • 5Zhou Yicang,生物数学学报,1995年,10卷,4期,1页
  • 6Song J,Population System Control,1987年
  • 7Webb G F.Theory of Nonlinear Age-dependent Population Dynamics[M].New York:Marcel Dekker,1985.
  • 8Iannelli M. Mathematical Theory of Age-structured Population Dynamics[M]. Pisa:Giardini Editori E Stampatori, 1995.
  • 9Iannelli M, Kim M Y, Park E J, et al. Global boundedness of the solutions to a Gurtin-MacCamy systems[J]. Nonlinear Differ Equ Ap-pl,2002,9:197~216.
  • 10谷超豪,李大潜,沈玮熙.应用偏微分方程[M].北京:高等教育出版社,1995.

共引文献13

同被引文献7

  • 1Viggo Andreasen, Thomas Fromeh. A school oriented, age-structured epidemic model[J]. SIAM. J. Appl. Math.2005,65(6):1870-1887.
  • 2Hoppensteat F. An age dependent epidemic model[J]. J Franklin Inst. , 1974,197:325-333.
  • 3Li Jia, Zhou Yicang, Ma Zhien,et al. H yman. Epidemiologieal models for mutating pathogens[J]. SIAM J. Appl. Math. 2004,65(1) :1-23.
  • 4Maia Martcheva,Sergel S. Plyugin. The role of coinfection in multidisease dynamics[J]. SIAM J Appl. Math. 2006,66(3) : 843-872.
  • 5Busenberg S,Castillo-Chavez C. A general solution of the problem of mixing of subpopulations and its application to risk-and age-structured epidemic models for the spread of AIDS[J]. IMA J. Math. Appl. Med. Biol. , 1990,8: 1-29.
  • 6Zhou Yicang, Song Baojun, Ma Zhien. The global stability analysis for a SIS model with age and infection age structures[C] // In Math. approaches for emerging and reemerging infectious diseases. Berlin: Springer--Vertag, 2001,126:313-335.
  • 7黄怡.具年龄结构和病程的传染病偏微分模型[J].新疆大学学报(自然科学版),2009,26(2):159-163. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部