期刊文献+

小波基对红外目标图像SPIHT算法性能的影响

Effect of wavelet basis on performance of SPIHT algorithm of infrared target image
下载PDF
导出
摘要 针对红外目标图像边缘模糊、噪声点多、对比度较低等特点,从分析小波基函数的三个评估指标入手,进行了大量的实验和统计,研究不同的小波基对红外目标图像SPIHT算法性能的影响,通过实验结果的分析与讨论,得出双正交小波D9/7小波和bior4.4小波适于红外目标图像实时压缩的结论,这一结论也有助于将来更好地发挥SPIHT算法的性能。 The infrared target image has the characteristics of blur edges, much noise and low contrast etc. By analyzing the three evaluation criteria, this paper studied the effect of different wavelet basis on performance of SPIHT algorithm of infrared target image through carrying out a large number of experiments and statistics. Through analysis and discussion of experiment results, the conclusion that D9/7 wavelet and Bior4.4 wavelet are propitious to real-time compression of infrared target image,which will also contribute much to exert potential coding ability of SPIHT algorithm.
出处 《激光与红外》 CAS CSCD 北大核心 2009年第5期546-550,共5页 Laser & Infrared
关键词 红外目标图像 小波基 SPIHT 双正交小波 infrared target image wavelet basis SPIHT biorthogonal wavelet
  • 相关文献

参考文献6

  • 1Said A,Pearlman W A new fast and efficient image coding based on set partitioning in hierarchical trees [ J ]. IEEE Trans on Circuits and Systems for Video Technology, 1996,6(3 ) :243 - 250.
  • 2毕迎春,王相海.小波基和图像分解层数对不同类型图像EZW算法的性能的影响[J].计算机科学,2006,33(6):232-235. 被引量:12
  • 3Grgic M, Ravnjak M,Zovko Cihlar B. Filter comparison in wavelet transform of still image[ C ]//Proc IEEE Int Symp Industrial Electronics, ISLE, Bled, Slovenia, 1999: 105 - 110.
  • 4Cohen A, Daubechies I, Feauveau J G. Biorthogonat bases of compactly supported wavelets [ J ]. Communications on Pure and Applied Mathematics, 1992,45 ( 3 ) :485 - 560.
  • 5Villasenor J, Belzer B, Liao J. Wavelet filter evaluation for image compression [ J ]. IEEE Trans. on Image Processing, 1995,4(8) :1053 - 1060.
  • 6Saha S,Vemuri R. Adaptive wavelet filters in image coders how important are they [ C ]//Proc. IEEE IECON'99, San Jose, California, 1999,2:559 - 564.

二级参考文献13

  • 1张旗,梁德群,李文举,沈小艳.面向图象压缩的图象分类及压缩结果预测[J].中国图象图形学报(A辑),2003,8(4):409-414. 被引量:7
  • 2MallatS 著,杨力华 戴道清 黄文良 湛秋辉 译.信号处理的小波导引(第二版)[M].北京:机械工业出版社,2002..
  • 3Shapiro J M. Embedded Image Coding Using Zerotrees of Wavelet coefficients. IEEE Trans on Signal Processing, 1993, 41 (12) :3445-3462
  • 4Boliek M. Editor. ISO/IEC JTC 1/SC29/WG 1, INFORMATION TECHNOLOGY- JPEG 2000 IMAGE CODING SYSTEM, ISO/IEC FCD15444-1, JPEG2000 Part I Final Committee Draft Version 1.0, March, 2000
  • 5张旗.基于属性的图像分类研究:[博士论文].大连海事大学.2004
  • 6Saha S, Vemuri R. Adaptive Wavelet Filters in Image Coders-How Important Are They. In:Proc.IEEE IECON'99, San Jose,California, 1999,2:559-564
  • 7Said A,Pearlman W. A new, fast and efficient image codec based on set partitioning in in hierarchical trees. IEEE Trans on Circuite and Systems for Video Technology, 1996,6(3) : 243-249
  • 8Grgic S, Kers K, Grgie M. Image Compression Using Wavelets.In:Proc. IEEE Int Symp Industrial Electronics, ISIE'99. Bled,Slovenia, 1999.99-104
  • 9Mandal M K, Panehanathan S, Aboulnasr T. Choice of Wavelets for Image Compression. Lecture Notes Comput Sci, 1996, 1133:239-249
  • 10Grgie M, Ravnjak M, Zovko-Cihlar B. Filter Comparison in Wavelet Transform of Still Image. In:Proc IEEE Int Symp Industrial Electronics, ISIE, Bled, Slovenia, 1999. 105-110

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部