期刊文献+

一类不稳定时滞过程的最优控制 被引量:2

Optimal control for a class of unstable time-delay processes
下载PDF
导出
摘要 本文对控制能量存在约束条件下一类不稳定时滞过程的最优控制问题进行了探讨.首先基于不稳定过程的互质分解,由敏感度函数和控制敏感度函数定义了一个包含跟踪误差和控制能量在内的性能指标,然后应用谱分解最小化该性能指标,从而为一类不稳定时滞过程导出了一种最优的控制器设计方法,可使系统在控制能量存在约束时获得最优的控制性能.仿真研究进一步说明了该方法的有效性. The optimal control problem is studied for a class of unstable time-delay processes under control-energy constraint. Firstly, based on the prime factorization of unstable process, we define a performance index containing the tracking error and plant input energy, which is represented by the sensitivity function and the control -sensitivity function. Applying the spectral factorization to minimize the performance criterion, we derive an optimal controller design method for a class of unstable time-delay processes, which can be used to obtain the optimal system performance under control energy constraint. Finally, the validity of the proposed approach is confirmed by the simulation research.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第5期567-569,共3页 Control Theory & Applications
基金 国家863项目基金资助项目(2003AA517020).
关键词 最优控制 控制能量约束 不稳定过程 谱分解 时滞 optimal control control energy constraint unstable process spectral factorization time-delay
  • 相关文献

参考文献10

  • 1SERON M M, BRASLAVSKY J, GOODWIN G. Fundamental Limitations in Filtering and Control[M]. New York: Springer-Verlag, 1997.
  • 2MORARI M, ZAFIRIOU E. Robust Process Control[M]. New York: Prentice Hall, 1989.
  • 3GUILLERMO J S, ANIRUDDHA D, BHATTACHARYYA S E New results on the synthesis of PID controllers[J]. IEEE Transactions on Automatic Control, 2002, 47(2): 241 -252.
  • 4PARASKEVOPOULOS P N, PASGIANOS G D, ARVANITIS K G. New tuning and identification methods for unstable first order plus dead-time[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 455 - 464.
  • 5VENKATASHANKAR V, CHIDAMBARAM M. Design of P and PI controllers for unstable first order plus time delay systems[J]. International Journal of Control, 1994, 60(1): 137 - 144.
  • 6KARIWALA V, SKOGESTAD S, FORBES J E et al. Achievable input performance of linear systems under feedback control[J]. International Journal of Control, 2005, 78(16): 1327 - 1341.
  • 7PAN Y J, MARQUEZ H J, CHEN T. Stabilization of remote control systems with unknown time varying delays by LMI techniques[J]. International Journal of Control, 2006, 79(7): 752 - 763.
  • 8PADMA SREE R, CHIDAMBARAM M. Set point weighted PID controllers for unstable systems[J]. Chemical Engineering Communications, 2005, 192(1): 1 - 13.
  • 9CHEN J, HARA S AND CHEN G. Best tracking and regulation performance under control energy constraint[J]. IEEE Transactions on Automatic Control, 2003, 48(8): 1320 - 1336.
  • 10GOODWIN G C, GRAEBE S E SALGADO M E. Control System Design[M]. Upper Saddle River, New Jersey: Prentice Hall, 2002.

同被引文献20

  • 1曹刚,俞海斌,徐巍华,褚健.大时滞不稳定对象的PID控制[J].仪器仪表学报,2005,26(3):301-303. 被引量:16
  • 2朱宏栋,邵惠鹤.基于改进IMC的开环不稳定时滞过程控制[J].控制与决策,2005,20(7):727-731. 被引量:14
  • 3李大字,刘展,靳其兵,曹柳林.分数阶控制器参数整定策略研究[J].系统仿真学报,2007,19(19):4402-4406. 被引量:19
  • 4CHENG Y C, HWANG C. Stabilization of unstable first-order time-delay systems using fractional-order pd controllers [ J ]. Jour- nal of the Chinese Institute of Engineers, 2006,29 (2) : 241-249.
  • 5PADULA F, VISIOLI A. Set-point weight tuning rules for fractional-order PID controllers [ J ]. Asian Journal of Control,2013,15 (3) :678-690.
  • 6DE PAOR A M, O. MALLEY M. Controllers of Ziegler-Niehols type for unstable process with time delay [ J ]. Int J Control, 1989,49 (4) : 1273-1284.
  • 7O'DWYER A. Handbook of PI and PID controller tuning rules [ M ]. London:Imperial College Press ,2009.
  • 8VISIOLI A. Practical PID control [ M]. London:Springer,2006.
  • 9ASTROM K J, HAGGLUND T. Advanced PID control [ M ]. USA : ISA Press,2006.
  • 10PADMA SREE R, SRINIVAS M N, Chidambaram M. A simple method of tuning PID controllers for stable and unstable FOPTD systems [ J ]. Computers & chemical engineering,2004,28 ( 11 ) :2201-2218.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部