期刊文献+

少缺陷样本的PCB焊点智能检测方法 被引量:5

Intelligent inspection of soldered joint based on artificial neuron network
下载PDF
导出
摘要 随着印刷电路板组装技术向高密度化和"零缺陷"方向发展,市场对自动光学检测系统的要求也向高准确率、智能化发展.而传统自动光学检测系统的检测算法不仅需要进行复杂的设置,而且需要大量不同类型的样本进行训练以提高系统的泛化性能,但在电路板组装过程中,有缺陷的样本难以获得.针对此类问题,提出了一种适应少缺陷样本的智能检测方法.首先对焊点图像的一系列特征进行了提取;然后介绍了一种基于统计方法的自动阈值设置方法;最后建立了用于进行焊点分类的BP神经网络.结果表明,方法具有较高的准确率. As electronic components get smaller and the board densities become more compact,it is necessary for automatic inspection in electronic manufacturing.The automatic optical inspection(AOI) system is demanded more precise and intelligent.The traditional inspection methods require large quantity samples of all types to train the inspector,or do some complicated setting.To overcome the disadvantages,an intelligent method was proposed.Firstly,a series of features of soldered joints were defined.Then,an automatic boundary setting method based on statistic was introduced.Finally,the neural network was established to classify the soldered joints.The performance of the method was verified by the experiment.
出处 《焊接学报》 EI CAS CSCD 北大核心 2009年第5期57-60,共4页 Transactions of The China Welding Institution
基金 国家杰出青年科学基金资助项目(50822504)
关键词 焊点 神经网络 机器视觉 检测 solder joint neural networks machine vision inspection
  • 相关文献

参考文献10

  • 1Ayoub G. Real-time SPC with AOI [ J]. SMT Magazine, 2001, 15(6) :36 - 38.
  • 2Lu S L, Zhang X M, Kuang Y C. Optimized design of an AOI illuminator [C]// Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing: Institute of Electrical and Electronics Engineers Inc, 2007: 924- 928.
  • 3Kim J H, Cho H S, Kim S. Pattern classification of solder joint images using a correlation neural network [ J]. Engineering Application of Artificial Intelligence, 1996,9(6) : 655 - 669.
  • 4卢盛林,张宪民,邝泳聪.基于神经网络的PCB焊点检测方法[J].华南理工大学学报(自然科学版),2008,36(5):135-139. 被引量:20
  • 5Yun T S, Sim K J, Kim H J. Support vector machine-based inspection of solder joints using circular illumination [J]. Electronics Letters, 2000, 36(11): 949-951.
  • 6Kim T H, Cho T H, Moon Y S, et al. Visual inspection system for the classification of solder joints [ J ]. Pattern Recognition, 1999, 32(4) :565 - 575.
  • 7Loh H H, Lu M S. Printed circuit board inspection using image analysis [J]. IEEE Transactions on Industry Applications, 1999, 35(2) : 426 - 432.
  • 8卢盛林,张宪民.无铅焊点检测光源的分析与优化设计[J].光学精密工程,2008,16(8):1377-1383. 被引量:16
  • 9David A F, Ponce J. Computer vision: a modem approach [M]. Beijing: Publishing House of Electronics Industry, 2004.
  • 10Theodoridis S, Koutroumbas K. Pattern recognition [M]. Singapore: Elsevier, 2006.

二级参考文献27

  • 1张舞杰,杨义禄,李迪,叶峰.自动影像测量系统关键算法[J].光学精密工程,2007,15(2):294-301. 被引量:48
  • 2卢清华,张宪民.基于梯度的多图像小波变换运动测量[J].华南理工大学学报(自然科学版),2007,35(1):39-43. 被引量:4
  • 3Ayoub George. Real-time SPC with AOI [ J ]. SMT Surface Mount Technology Magazine,2001,15 (6) :90-92.
  • 4Norris Mark J. Vectoral imaging : the new direction in automatic optical inspection [ EB/OL ]. http://www, vitechnology, com/img/data/Vectoral_Imaging. PDF.
  • 5Kim J H,Cho H S, Kim S. Pattern classification of solder joint images using a correlation neural network [ J]. Engineering Applications of Artificial Intelligence, 1996, 9 (6) :655-669.
  • 6Bartlett S L, Bes P J, Cole C L, et al. Automatic solder joint inspection [ J ]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 1988,10 ( 1 ) :31- 34.
  • 7Yun T S,Sim K J,Kim H J. Support vector machine-based inspection of solder joints using circular illumination [ J ]. Electronics Letters, 2000,36:949- 951.
  • 8Kim Tae-Hyeon, Cho Tai-Hoon, Young Shik Moon, et al. Visual inspection system for the classification of solder joints [J]. Pattern Recognition,1999,32:565-575.
  • 9Loh Horng-Hai, Lu Ming-Sing. Printed circuit board inspection using image analysis [ J ]. IEEE Transactions on Industry Applications, 1999,35:426-432.
  • 10Broadhurst Robert E, Stough Joshua, Pizer Stephen M, et al. A statistical appearance model based on intensity quantile histograms [ C]//Proc of the 3rd IEEE International Symposium on Biomedical Imaging:Nano to Macro. Arlington : IEEE ,2006:422-425.

共引文献29

同被引文献45

  • 1周颖,郝红敏,裘之亮,张雪萍.基于改进小波变换的焊点识别方法的研究[J].河北工业大学学报,2013,42(2):15-19. 被引量:2
  • 2LINDEBERG T. Edge detection and ridge detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998, 30(2) : 117-154.
  • 3LOWED G. Object recognition from local scale-invariant features [ C ]. Proceedings of International Conference on Computer Vision. 1999 : 1150-1157.
  • 4LOWED G. Distinctive image features from scale-invari- ant keypoints[ J]. International Journal of Computel Vi- sion 2004,60(2) :91-110.
  • 5BAY H, TUVETELLARS T. SURF: speeded up robust features [ C ]. Proceedings of the European Conference on Computer Vision,2006:404-417.
  • 6BAUER J,SUNDERHAUF N, PROTZEL P. Comparing several implementations of two recently published feature detectors [ C ]. Proceedings of the international confer- ence on intelligence and autonomous systems, Toulouse, France, 2007.
  • 7AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases [ C ]. Proceedings of Conference on Very Large Data Bases, 1994:487-499.
  • 8LINDEBERG T. Feature detection with automatic scale selection, IJCV, 1998, 30 (2) :79-116.
  • 9DUDA R O, HART P. Pattern classification[ M ]. San Francisco, CA:John Wiley and Sons, 2006.
  • 10程学根.基于图像处理的导弹半筒焊点质量检测技术研究[D].哈尔滨:哈尔滨工业大学,2008.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部