期刊文献+

奇异椭圆方程对称解的存在性

Existence of symmetric solutions of a singular elliptic equation
下载PDF
导出
摘要 研究了一类带奇性的p-Laplace方程,利用集中紧性原理,分s=0,s≠0两种情形对方程中可能存在的Dirac函数进行讨论,得到PS条件成立的最小能量水平,并通过一系列精巧的估计验证这个PS条件,得到方程G-对称解的存在性. A class of singular p - Laplace equations is considered. Using the concentration-compact principle, the Dirac functions existed in this problem are discussed for the case of"s = 0" and"s 50" respectively. Then a minimal energy level is determined. This minimal energy level is the level which makes PS conditions of the problem hold. Finally through a series of exquisite estimates, the existence of G - symmetric solutions is obtained.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2009年第3期317-320,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10576013 10871075) 华南农业大学校长基金资助项目(4900-K07418)
关键词 对称 奇异 LAPLACE方程 能量水平 极值原理 symmetry singular Laplace equation energy levels maximum principle
  • 相关文献

参考文献7

  • 1Azorero J P G,Alonso I P.Hardy inequalities and some critical elliptic and parabolic problems[J].J Differen tial Equations,1998,144:441-476.
  • 2Bartsch T,Peng Shuangjie.Solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations[J].I Indiana Univ Math J,2008,57(4):1599-1631.
  • 3Deng Yinbin,Jin Lingyu,Peng Shuangjie.A Robin boundary problem with Hardy potential and critical nonlinearities[J].J Anal Math,2008,104:125-154.
  • 4Deng Yinbin,Jin Lingyu.On symmetric solutions of a singular elliptic equation with critical Sobolev-Hardy exponent[J].Journal of Mathematical Analysis and Applications,2007,329(1):603-616.
  • 5Kang Dongsheng.On the quasilinear elliptic problem with a critical Hardy-Sobolev exponent and a Hardy term[J].Nonlinear Analysis:Theory,Methods Applications,2008,69(8):2432-2444.
  • 6Lions P L.The concentration compactness principle in the calculus of variation[J].Rev Mat Ibero,1985,1(1):145-201,2(1):45-121.
  • 7Willem M.Mininmax Theorems[M].Boston:Bi rkhuser,1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部