摘要
研究了一类带奇性的p-Laplace方程,利用集中紧性原理,分s=0,s≠0两种情形对方程中可能存在的Dirac函数进行讨论,得到PS条件成立的最小能量水平,并通过一系列精巧的估计验证这个PS条件,得到方程G-对称解的存在性.
A class of singular p - Laplace equations is considered. Using the concentration-compact principle, the Dirac functions existed in this problem are discussed for the case of"s = 0" and"s 50" respectively. Then a minimal energy level is determined. This minimal energy level is the level which makes PS conditions of the problem hold. Finally through a series of exquisite estimates, the existence of G - symmetric solutions is obtained.
出处
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2009年第3期317-320,共4页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(10576013
10871075)
华南农业大学校长基金资助项目(4900-K07418)