期刊文献+

基于辅助变量的闭环系统子空间辨识 被引量:5

Closed-loop subspace identification based on instrumental variable
原文传递
导出
摘要 提出一种基于辅助变量的子空间辨识方法,适用于控制器信息未知以及参考输入已知的闭环系统参数辨识.通过将输入-输出数据块正交投影到辅助变量的行空间,直接得到扩展观测矩阵垂空间的估计.由此可从闭环系统中提取出对象模型信息,同时由SVD分解得到扩展观测矩阵与下三角Toeplitz矩阵的估计.给出了系统参数矩阵、噪声矩阵的计算方法.将所提出的子空间辨识方法应用于闭环动态的系统参数估计,其结果表明了该方法的有效性. A subspace identification method based on instrumental variable is proposed for parameter estimation of closed-loop dynamic systems with known setpoint input. The proposed method is suitable for the closed-loop identification without any controller information. The orthogonal complement to the extended observability matrix can be directly estimated by projecting the future input-output block data onto the row space of the instrumental variable. Then the model process information can be extracted from the closed-loop dynamic systems. The extended observability matrix and lower triangular block-Toeplitz matrix can be estimated by the singular value decomposition. Furthermore, the computation of the system parameter matrices and the noise covariance matrix is given. Finally, a simulation example illustrates the performance of the proposed algorithm in closed-loop identification.
作者 衷路生 杨辉
出处 《控制与决策》 EI CSCD 北大核心 2009年第5期670-674,共5页 Control and Decision
基金 江西省教育厅项目(GJJ09222) 国家自然科学基金项目(60864004) 国家863计划项目(2008AA04Z129)
关键词 系统辨识 子空间辨识 闭环系统 辅助变量 正交投影 System identification Subspace identification Close-loop system Instrumental variable Orthogonal projection
  • 相关文献

参考文献10

  • 1Qin S J.An overview of subspace identification[J].Computers and Chemical Engineering,2006,30(10):1502-1513.
  • 2Ljung L,McKelvey S T.Subspace identification from closed loop data[J].Signal Processing,1996,52(2):209-215.
  • 3Katayama T,Tanaka H.An approach to closed-loop subspace identification by orthogonal decomposition[J].Automatica,2007,43(9):1623-1630.
  • 4Chiuso A.The role of vector autoregressive modeling in predictor-based subspace identification[J].Automatica,2007,43(6):1034-1048.
  • 5Chou C T,Verhaegen M.Subspace algorithms for the identification of muhivariable dynamic errors-invariablemodels[J].Automatica,1997,33 (10):1857-1869.
  • 6Wang J,Qin S J.Closed-loop subspace identification using the parity space[J].Automatica,2006,42(2):315-320.
  • 7Qin S J,Lin W,Ljung L.A novel subspace identification approach with enforced causal models[J].Automatica,2005,41(12):2043-2053.
  • 8Jasson M.Subspaee identification and ARX modeling[C].Proe of the 13th IFAC Symposium on System Identification.Rotterdam,2003:1625-1630.
  • 9Chiuso A,Picci G.Consistency analysis of some closedloop subspaee identification methods[J].Automatica,2005,41(3):377-391.
  • 10Huang B,Ding S X,Qin S J.Closed-loop subspace identification:An orthogonal projection approach[J].J of Process Control,2005,15(1):53-66.

同被引文献54

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部