摘要
通过讨论Fritz John一阶必要条件形成的方程系统,研究参数二次规划解的分歧性质.先证明了由参数二次规划形成的方程系统的Jacobian矩阵具有一维核空间;又证明了该系统有两条解分支,并计算出解的基本表达式.
In this paper, we mainly consider the parametric second - order programme. And we study the bifurcation propositions of the parametric second - order programme through a system of nonlinear equation formed by Fritz John first - order necessary condition. First, we prove that the Jacobian of the formulated system of nonlinear equation has one - dimensional null space ; and then, display two branches of the system and state their basic forms.
出处
《哈尔滨师范大学自然科学学报》
CAS
2009年第2期4-8,共5页
Natural Science Journal of Harbin Normal University
关键词
参数二次性规划
分歧
解分支
The parametric second - order programme
Bifurcation
The branches of solutions