期刊文献+

Q460C连铸板坯的高温塑性 被引量:5

Hot Ductility of Q460C Continuously Cast Slabs
原文传递
导出
摘要 在Gleeble-1500热模拟机上测定了Q460C连铸坯的热塑性,深入分析了钢Q460C的高温脆化机理,确定了连铸坯的最佳矫直温度。结果表明,钢Q460C高温脆化受变形速率的影响较大,在第Ⅲ脆性区变形速率越低脆化越严重,实验用钢Q460C的低塑性区确定在660-985℃,连铸坯顶弯、矫直温度应高于985℃,有利于提高塑性,避免连铸坯表面裂纹的产生。 Hot ductility of Q460C continuously cast slabs was tested by Gleeble-1500 thermal strain simulation machine. The results indicated that the strain rate had a great effect on hot ductility of Q460C slab. The plasticity of Q460C steel was reduced with the increase of the strain rate in the third brittle zone. Temperature ranging from 660 ℃ to 985 ℃ was defined to be the low ductility temperature domain of the Q460C slab. Enhancing the temperature over 985 ℃ during bending and strengthening was helpful in improving ductility of Q460C steel and avoiding surface cracks of slab.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2009年第5期22-25,共4页 Journal of Iron and Steel Research
关键词 Q460C连铸板坯 热模拟 高温塑性 Q460C continuously cast slab thermal simulation hot ductility
  • 相关文献

参考文献8

二级参考文献41

  • 1雍岐龙 马鸣图.微合金钢--物理和力学冶金[M].北京:机械工业出版社,1989..
  • 2蔡开科 党紫九.连铸钢高温力学性能[J].北京科技大学学报,1993,(2).
  • 3束田 幸四郎.徽合金钢热加工时的徽合金化效果与各类问题[J].钢铁钒钛译丛,1986,(1):1-34.
  • 4MeyerL Schneider C StraBburger c.徽合金元素Nb、V、Ti、Zr、和B在HSLA钢中的作用及目前的应用[J].钢铁钒钛译丛,1986,(1):59-72.
  • 5刘兴乾.钢中的微量钛[J].钢铁钒钛,1986,(3):95-103.
  • 6Lankford W T,JR.Some Considerations of Strength and Ductility in the Continuous-Casting Process.Metallurgical Transactions,1972,13(6):1331.
  • 7王新华 吴冬梅.1400~1600 ℃间碳钢连铸坯的脆化特性研究[J].钢铁,1997,32(10):750-750.
  • 8张克强.连铸二冷区铸坯表面温度及配水研究[J].钢铁,2000,35:288-290.
  • 9Suzuki H G, Nishimura S, Yamaguchi S. Characteristics of Embrittlement in Steels above 600℃. Tetsu-to-Hagane, 1979, 65(14): 2038.
  • 10Suzuki H G, Nishimura S, Imamura J. Hot ductility in steels in the temperature range between 900 and 600℃. Tetsu-toHagane, 1981, 67(8): 1180.

共引文献142

同被引文献31

  • 1王虹洁,周强.通过引进二冷动态控制系统提高了板坯铸坯表面质量[J].制造业自动化,2005,27(5):65-66. 被引量:6
  • 2韩孝永.铌、钒、钛在微合金钢中的作用[J].宽厚板,2006,12(1):39-41. 被引量:131
  • 3Kim S I, Choi S H, Lee Y. Influence of phosphorous and boron on dynamic recrystallization and microstrnctures of hot-rolled interstitial free steel [ J]. Mater Sci Eng A, 2005, 406:125 -133.
  • 4He X L, Djahazi M, Jonas J J, et al. The non-equilibrium segregation of boron during the recrystalization of Nb-treated HSLA steels[ J]. Acta Metallurgiea et Materialia, 1991, 39 (10) : 2295 - 2308.
  • 5Lopez-Chipres E, Mejta I, Maldonado C, et al. Hot flow behavior of boron microalloyed steels[ J ]. Mater Sci Eng A, 2008,480 (1 -2) : 49 -55.
  • 6Zhao Y T, Yang S W, Shang C J, et al. The mechanical properties and corrosion behavior of uhra-low carbon microalloying steel[ J]. Mater Sci Eng A, 2007, 454-455 : 695 -700.
  • 7Wang Z F, Li P H, Guan Y, et al. The corrosion resistance of ultra-low carbon bainitic steel[J]. Corros Sci, 2009, 51 : 954 -961.
  • 8Sevmk A, Sevmkova J. Plasticity drop at temperatures above 1200℃ in the cast state of low carbon steels and its analysis[ J]. Materials and Design, 2008, 29: 118-123.
  • 9Yoshida N, Umezawa O, Nagai K. Influence of phosphorus on solidification structure in continuously cast 0. 1 mass% carbon steel[ J]. ISU Int, 2003,43(3): 348 -357.
  • 10Suzuki H G, Nishimura S. Characteristics of hot ductility in steel subjected to the melting and solidification[ J]. Transactions of the Iron and Steel Institute of Japan, 1982, 22 ( 1 ) :48 - 54.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部