期刊文献+

敏度分析的数值方法比较研究 被引量:3

Comparison Studies on Numerical Methods for Sensitivity Analysis
下载PDF
导出
摘要 为提高优化方法中敏度计算的精度和效率,比较研究了拟梯度、复数步长微分和自动微分三种数值方法原理及实现。采用操作符重载和模板技术实现复数步长微分和自动微分,并将自动微分前向模式和反向模式结合起来计算Hesse矩阵。研究表明:拟梯度能有效地减少函数求值次数,但对高度非线性函数其计算精度较差;复数步长微分方法简单,能得到机器精度的梯度值,但需要处理复数,计算量较大;自动微分在函数求值的同时并行计算高阶精确导数值,计算量适中。 To enhancing accuracy and efficiency of sensitivity analysis in optimization, three numerical methods: quasi-gradient, complex-step derivative and automatic differentiation, are studied and compared form theory, implementations and applications. An implementation of automatic differentiation using operator overloading and templates is de- scribed in detail, which provides a flexible way to compute hesse matrix by combining forward & reverse methods. The re- suits of numerical examples show that: quasi-gradient has the best efficiency, bht its precision is very poor when used in high nonlinear problems. Complex-step derivative is accurate and easy to implement with high computational expense. Automatic differentiation can get exact high order derivatives simultaneously with function evaluating and with compromise computational expense.
出处 《计算机与数字工程》 2009年第5期1-5,共5页 Computer & Digital Engineering
基金 国家863项目(编号:2006AA04Z121) 国家自然科学基金项目(编号:50775084) 广西制造系统与先进制造技术重点实验室主任课题(编号:0842006_029_Z)资助
关键词 敏度分析 拟梯度 复数步长微分 自动微分 sensitivity analysis, quasi-gradient, complex-step derivative, automatic differentiation
  • 相关文献

参考文献7

  • 1钱治航,余俊,周济.符号微分及其在数值优化中的应用[J].计算机与数字工程,1994,22(2):24-28. 被引量:1
  • 2Lyness J N,Moler C B.Numerical Differentiation of Analytic Functions[J].SIAM J.Numero Anal.,1967,(4):202-210
  • 3Wengert R E.A Simple Automatic Derivative Evaluation Program[J].Communications of the ACM,1964,7(8):463-464
  • 4Martins J R R A,Kroo I M,Alomo J J.An Automated Method for Sensitivity Analysis using Complex Variables[J].AIAA,Aerospace Sciences Meeting and Exhibit,38th,Reno,NV,UNITEDSTATES,2000,1:1-12
  • 5程强,王斌,马再忠.自动微分转换系统及其应用[J].数值计算与计算机应用,2003,24(4):276-284. 被引量:1
  • 6颜力,陈小前,王振国.飞行器MDO中灵敏度计算的自动微分方法[J].国防科技大学学报,2006,28(2):13-16. 被引量:5
  • 7Bischof C,Carle A,Khademi P,et al.ADIFOR 2.0:Automatic Differentiation of Fortran 77 Programs[J].IEEE Comp.Science and Engr,1996,3(3):18-32

二级参考文献9

  • 1颜力,陈小前,王振国.飞行器多学科设计优化中的灵敏度分析方法研究[J].航空计算技术,2005,35(1):1-6. 被引量:18
  • 2Sobieszczanski-Sobieski J,Haftka R T.Multidisciplinary Aerospace Design Optimization,Survey of Recent Developments[R].AIAA Paper 96-0711,1996.
  • 3Barthelemy J F,Hall L E.Automatic Differentiation as a Tool in Engineering Design[J].Structural Optimization,1995,9:76-82.
  • 4Griewank A.On Automatic Differentiation[A].Mathematical Programming:Recent Developments and Application.Kluwer Academic Publishers Dordrecht,1989:83-108.
  • 5Rall L B.Automatic Differentiation:Techniques and Applications[M].Springer-Verlag,Berlin Heidelberg New York,1981.
  • 6Walther A.Basics of Automatic Differentiation[R].AD Short Course,SIAM Optimization Conference 19,May,2002.
  • 7Griewank A,Corliss G F.Automatic Differentiation of Algorithms:Theory,Implementation,and Application[M].SIAM,Philadelphia,1991.
  • 8程彬杰,王莉萍,邵志标,唐天同.数据拟合中自动微分技术的应用[J].西安交通大学学报,1999,33(7):19-22. 被引量:4
  • 9穆穆.Nonlinear singular vectors and nonlinear singular values[J].Science China Earth Sciences,2000,43(4):375-385. 被引量:37

共引文献4

同被引文献36

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部