期刊文献+

特征选择中信息熵的应用 被引量:12

Novel method for feature selection based on entropy
下载PDF
导出
摘要 将信息论中熵的概念应用到特征选择中,定义了两种信息测度评价特征——误差熵和混叠熵,然后阐述了两种定义的不用物理意义,分析了计算熵中最关键的区间划分问题,并提出一种较好的区间划分方法。由于熵不能将相似的特征进行剔除,结合相似系数提出了一套完整的基于熵的特征选择过程,并通过仿真实验进行验证。 This paper applies the entropy concept of information theory to feature selection,and defines two information measurements overlap entropy and error entropy that are used to evaluate features.Then the physical meanings of the two definiens are explained.The crucial problem about how to divide the interzones is provided in the following.Then this paper adds a kind of similarity to form a complete feature selection process in order to involve the defect of entropy that it can not filter similar features.An emulation is made to prove the validity of this method at the end.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第15期54-57,共4页 Computer Engineering and Applications
关键词 特征选择 混叠熵 误差熵 相似度 特征评价 信息测度 feature selection overlap-entropy erro-entropy similarity feature evalution information measurement
  • 相关文献

参考文献14

  • 1Kira K ,Rendell L A.The feature selection problem:Traditionalmethods and a new algorithm[C]//Tenth National Conference on Artificial Intelligence.Cambrialge:MIT Press, 1992:129-134.
  • 2Choubey S K,Deogun J S.On feature selection and effective classitiers[J].ASIS, 1998,49 ( 5 ) : 423-434.
  • 3Cohen I,Tian Q.Feature selection using principal feature analysis[C]// Proceedings of the 15th International Conference on Multimedia, 2007 : 301-304.
  • 4Aha D W,Bankert R L.A comparative evaluation of sequential feature selection algorithms[C]//Fisher D,Lenz H.5th International Workshop on Artificial Intelli gence and Statistics.New York: Springer, 1991.
  • 5Bins J,Draper B A.Feature selection from huge feature sets[C]// Proceedings of the $th IEEE Conference on Computer Vision and Pattern Recognition, 2001.
  • 6王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 7Kohavi R,John G H.Wrappers for feature subset selection[J].Artificial Intelligence, 1997,12:273-324.
  • 8刘开第,薛俊锋,庞彦军.特征选择及其常用算法[J].河北建筑科技学院学报,2004,21(4):111-113. 被引量:2
  • 9Dash M,Liu H.Feature selection for clustering[C]//The PAKDD 2000, Kyoto, 2000.
  • 10Hamming R W.Coding and information theory[M].New York:Prentice Hall, 1980.

二级参考文献51

  • 1钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 2张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 3Sergios Theodoridis Konstantinos Koutroumbas.Pattern Recognition(Second Edition)[M].北京:机械工业出版社,2003.163-205.
  • 4Nojun Kwak,et al. Input Feature Selection for Classification Problems[ J ]. IEEE Transaction on Neural Network ,2002,13 : 143-157.
  • 5Ming Dong,Ravi Kothari. Feature Subset Selection Using a New Definition of Classifiability [ J ]. Pattern Recognition Letters ,2003,24 :1215-1225.
  • 6M Dash. Feature Selection via Set Cover [ C ]. Newport Beach:Proceedings of the 1997 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX'97), 1997. 165-171.
  • 7M Morita, R Sabourin,et al. Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition[ C ]. Edinburgh, Scotland:International Conference on Document Analysis and Recognition ( ICDAR'03 ) ,2003. 666-671.
  • 8Jayanta Basak, Rajat K De, Sankar K Pal. Unsupervised Feature Selection Using a Neuro-fuzzy Approach [ J ]. Pattern Recognition Letters,1998,19( 11 ) :997-1006.
  • 9M Dash, H Liu ,J Yao. Dimensionality Reduction of Unsupervised Data[ C]. Newport Beach:Proc. 9th IEEE Int'l Conf Tools with Artifical Intelligence, 1997. 532- 539.
  • 10Nicolas V, L M, J-G Postaire. Unsupervised Color Texture Feature Extraction and Selection for Soccer Image Segmentation[ C ]. Vancouver,Canada: IEEE International Conference on Image Processing (ICIP'2000) ,2000. 800-803.

共引文献113

同被引文献90

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部