期刊文献+

最优约简在分类问题中的应用

Application of optimal reduct in classification problem
下载PDF
导出
摘要 在机器学习和人工智能中,粗糙集是进行属性维约简的重要理论与方法。但是,对于给定的信息系统,可能存在多个不同的约简,而不同的约简将会导致产生不同的知识。因此,选择最适合的约简成为一个关键的问题。以此为研究目标,通过在信息系统上增加额外的信息-偏序关系,利用此关系指导属性约简的过程,求出该偏序关系下的最优约简,并运用该最优约简对原信息系统进行维约简。通过对相关工作进行比较分析,详细设计并证明了求取该最优约简的算法,并将最优约简运用于分类问题,得到了良好的效果。 In machine learning and artificial intelligence,rough set theory is an important theory for dimension reduction.However,one given information system may have more than one reduct,which will lead to different knowledge.Therefore,it is a critical problem to select one suitable reduct for knowledge discovery.Aiming at this,this paper appends additional information preference relation into information system and uses it to guide the procedure of finding an reduct,which will produce optimal reduct under preference.Also,this paper proves the correctness of the algorithm and uses it to reduce the information system.In subsequent experiment,this paper applies the optimal reduct in classification problem and receives good effect.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第15期154-157,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60603077 山东省自然科学基金No.Y2006G31 鲁东大学自然科学基金资助项目(No.L20064101)~~
关键词 最优约简 粗糙集理论 偏序关系 分类问题 optimal reduct rough set theory preference relation classification problem
  • 相关文献

参考文献7

  • 1Pawlak Z.Rough sets [J].Intemational Journal of Computer and Information Sciences, 1982,11 (5) : 341-356.
  • 2Hu K,Diao L,Lu Y,et al.Sampling for approximate reduct in very large databases[EB/OL].(2000).http://citeseer.ist.psu.edu/587308.html.
  • 3张小峰,张福增,李明,王娜.偏好关系下的最优约简求解算法研究[J].计算机工程与设计,2005,26(8):2103-2106. 被引量:2
  • 4Yao Y,Zhao Y,Wang J.On reduct construction algorithms[C]//LNAI 4062:Proceedings of the 1st International Conference on Rough Sets and Knowledge Technologies, 2006: 297-304.
  • 5Zhao Y,Zhang X,Jia S,et al.Applying PSO in finding useful features[C]//LNAI 4062:Proceedings of the 1st International Conference on Rough Sets and Knowledge Technologies,2006:580-585.
  • 6Simovici D A,Tenney R L.Relational database system[M].[S.l.]:Academic Press, 1995.
  • 7URI machine learning repository[EB/OL].[2008].http://www.ics.uci. edu/-ndearn/MLRepository.html.

二级参考文献9

  • 1Pawlak Z. Rough sets[J] .International Journal of Computer and Information Sciences, 1982,(11):341-356.
  • 2Hung Son Nguyen, Dominik Slezak. Approximate reducts and association rules, correspondence and complexity results[A].In:Zhong N, Skowron A, Ohsuga S, et al. Proceeding of the seventh international workshop on new direction in rough sets, data mining and granular-soft computing (RSFDGrC'99) [C]. Yamaguchi, Japan:Lecture Notes in Artificial Intelligence 1711. Berlin:Springer Verlag, 1999.137-145.
  • 3Bazan. Dynamic reducts and statistical inference[C].Sixth International Conference on IPMU, 1996.1147-1152.
  • 4Zhao Kai, Wang Jue.A reduction algorithm meeting user's requirements[J]. Journal Computer Science and Technology, 2002,17(5):578-593.
  • 5Keyun Hu, Yuchang Lu, Chunyi Shi. Feature ranking in rough sets[EB/OL]. Http:∥citeseer. ist.psu.edu/587273.html.
  • 6Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Kluwer Academic Publishers, 1991.
  • 7Clifford A Shaffer. A practical introduction to data Structures and algorithm analysis[M]. Prentice Hall, 1998.
  • 8Dan A Simovici, Richard L. Tenney relational database system[M].Academic Press, 1995.
  • 9Lech Polkowski, Shusaku Tsumoto, Tsau Y Lin. Rough set methods and applications: New developments in knowledge discovery in information systems[M].Springer-Verlag, Heidelberg,2000.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部