期刊文献+

延迟自反馈控制Hindmarsh-Rose神经元的混沌运动 被引量:8

Chaotic control of Hindmarsh-Rose neuron by delayed self-feedback
原文传递
导出
摘要 利用线性时间延迟自反馈方法,研究单个Hindmarsh-Rose(H-R)神经元模型混沌动力学模式的控制问题.分别将增益因子和时间延迟作为控制参数,通过数值模拟分析,发现在增益因子和时间延迟两个参数组合的一些范围内,混沌动力学模式的H-R神经元运动可自动被控制成时间间隔意义上的单峰、2峰、3峰及4峰的周期或多倍周期模式.延迟时间的选取并无特别要求,不必和嵌入在混沌吸引子内的某不稳周期轨道的周期相同,延迟控制自适应地引导混沌轨到相应的放电峰峰间隔的周期模式上. The control problems of chaotic dynamical patterns of single Hindmarsh-Rose neuron model are studied by using delayed feedback self-control method. Taking gain factor and time delay as controlling parameters respectively, in some ranges of the combination of gain factor and time-delay, we find that the chaotic burst pattern of inter-spike interval sequences of H-R neuron can be controlled to a single-spike period, double-spikes period, 3-or 4-spikes period pattern or multi-period of these patterns for inter-spike interval as the results of numerical simulation analysis. Choice of delay is in-dependent and doesn't rely on the period of unstable periodic orbits embedded within chaotic attractor. The chaotic burst orbit will be controlled to a certain type of periodic patterns of inter-spike interval automatically.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第5期2977-2982,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10572086)资助的课题~~
关键词 H-R神经元 延迟反馈控制 混沌放电模式 峰峰间隔周期 H-R neuron, delayed feedback control, chaotic fire pattern, inter-spike interval period
  • 相关文献

参考文献10

二级参考文献77

  • 1阮炯.混沌应用研究的动态及分析[J].自然杂志,1995,17(6):318-322. 被引量:10
  • 2于洪洁,彭建华.Hindmarsh-Rose神经元模型的混沌控制[J].生物物理学报,2005,21(4):295-300. 被引量:9
  • 3Freeman WJ. The physiology of perception. Scientific American, 1991,264(2):78-85.
  • 4Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett, 1990,64:1196-1199.
  • 5Pecora LM, Carrol TL. Synchronization in chaotic system.Phys Rev Lett, 1990,64:821-824.
  • 6Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A, 1992,170:421-428.
  • 7Yu HA, Liu YZ. Chaotic synchronization based on stability criterion of linear system. Phys Lett A, 2003,314:292-298.
  • 8Yu H J, Liu YZ. Continuous control of chaos based stability criterion. Phys Rev E, 2004,69:066203-0662039.
  • 9Ditto WL, Rauseo SN, Spano ML. Experimental control of chaos. Phys Rev Lett, 1990,65:3211-3214.
  • 10Shinbrot T, Grebogi C, Ott E, Yorke JA. Using small perturbations to control chaos. Nature, 1993,363:411-417.

共引文献34

同被引文献74

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部