期刊文献+

Rh在单壁碳纳米管上吸附的密度泛函理论研究 被引量:2

Density functional theory study of rhodium adsorption on single-wall carbon nanotubes
原文传递
导出
摘要 本文利用密度泛函理论研究了Rh原子在(6,6)单壁碳纳米管内外的吸附行为.通过对Rh在单壁碳纳米管上不同吸附位的吸附构型与吸附能的研究发现:Rh吸附在管内、外的洞位最稳定,且管外吸附比在管内强.这是由于单壁碳纳米管的卷曲效应使得管外电荷密度比管内大造成的.态密度分析表明,吸附在管内外的Rh原子的5s电子均转移到了4d轨道上;Rh原子4d轨道上的电子转移到了(6,6)碳管上,使Rh带正电,碳管带负电.结合能带分析表明,Rh原子吸附在管内磁性较弱,而吸附在管外较强. Rhodium adsorption on (6, 6) single-walled carbon nanotubes (SWCNTs) was systematically investigated by density functional theory. ( DFT). According to the analysis of adsorption configurations and adsorption energies, it is found that the most stable configurations are I-H1, I-H2, O-H1, O-H2 and O-B1. The adsorption energy of O-H2 is - 2.29 eV, which is 0.49 eV higher than that of I-H2. This might be attributed to the graphite's winding effect, which the well-proportioned charge density on the graphite redistributes during the formation process of SWCNTs and then induces more charge to the outside of SWCNTs than the inside. Based on the partial density of states (PDOS) and Mulliken charge analysis, it is found that 5s electrons of Rh transfer to 4d orbit, while 4d electrons transfer to SWCNTs. Therefore, the Rh atom is positively charged, while the (6, 6) SWCNTs is negatively charged. Combining the PDOS calculations with the band structure results, the magnetism of Rh adsorbed outside of SWCNTs is higher than that inside SWCNTs.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第5期3331-3337,共7页 Acta Physica Sinica
基金 浙江省自然科学基金青年科技人才专项(批准号:RC02069)资助的课题~~
关键词 密度泛函理论 单壁碳纳米管 Rh原子 吸附 density functional theory, single-wall carbon nanotubes, rhodium atom, adsorption
  • 相关文献

参考文献33

  • 1刘忠范译.2007碳纳米管.科学与应用,北京:科学出版社
  • 2Baughman R H, Zaldaidov A A, de Heer W A 2002 Science 297 787
  • 3Bezryadin A, Lau C N, Tinkham M 2000 Nature 404 971
  • 4Zhang Y, Franklin N W, Chen R J, Dai H J 2000 Chem. Phys. Lett. 331 35
  • 5Leonhardt A, Ritschel M, Elefant D, Mattem N, Biedermann K, Hampel S, bltiUer C, Gemming T, Btichner B 2005 J. Appl. Phys. 98 074315
  • 6Wang S, Yu G J, Gong J L, Li Q T, Xu H J, Zhu D Z, Zhu Z Y 2006 Nanotechnology 17 1594
  • 7Winkler A, Muhl T, Siegfried M, Kozhuharova-Koseva R, Hampel S, Leonhard A, Bllchner B 2006 J. Appl. Phys. 99 104905
  • 8Jia J M, Shi D N, Zhao J J, Wang B L2007 Phys. Rev. B 76 165420
  • 9Yang S H, Shin W H, Kang J K 2006 J. Chem. Phys. 125 084705
  • 10GUlseren O, Yildirim T, Ciraci S 2001 Phys. Rev. Lett. 87 116802

二级参考文献16

  • 1Philip G et al 2000 Science 287 1801.
  • 2Chen R J et al 2001 Appl. Phys. Lett. 79 2258.
  • 3Ricca A et al 2003 Phys. Rev. B 68 035433.
  • 4Dag S et al 2003 Phys. Rev. Lett. 67 165424.
  • 5Jhi S H et al 2000 Phys. Rev. Lett. 85 1710.
  • 6Chan S P et al 2003 Phys. Rev. Lett. 90 086403.
  • 7Froudakis G E et al 2003 Phys. Rev. B 68 115435.
  • 8Grujicic M et al 2003 Applied Surface Science 214 289.
  • 9Yamada T 2004 Phys. Rev. B 69 125408.
  • 10Segall M D et al 2002 J. Phys.: Cond. Matt. 14 2717.

共引文献10

同被引文献11

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部