期刊文献+

栅极调制纳米线的场增强因子计算 被引量:2

Calculation of field enhancement factor of gated nanowire
原文传递
导出
摘要 利用悬浮球模型和镜像电荷法计算了栅极调制纳米线的顶端表面电场,给出了场发射增强因子表达式β=1/2(3.5+L/r0+W),式中L与r0分别是纳米线长度与顶端表面曲率半径,W是由栅孔半径R、阴极与栅极间距d以及纳米线自身几何参数所决定的函数.结果表明,纳米线长径比对场增强因子的影响很显著;当阴极与栅极间距较近时,场增强因子随d的增加而减小,而当栅极处于无穷远时,纳米线场增强因子的表示式变成β0=3.5+L/r0;栅孔半径越小,场增强因子就越大,当栅孔半径趋于零时,场增强因子为β=β0+1.202(L/d)3. To estimate the field enhancement factor of the gated nanowire, the image charge model of floating sphere between parallel gate and cathode plates is proposed. The field enhancement factor of the gated nanowire is expressed by β =1/2 - (3.5 + L/ ro + W), where L and ro are the length and tip radius of nanowire, respectively, and W is a function of the gate-hole radius R, gate-cathode distance d and the geometrical parameters of the nanowire. The calculation results show that the influence of the aspect ratio of the nanowire on the enhancement factor is remarkable, i.e., the enhancement factor increases rapidly with the increase of the length and top curvature of the nanowire. Furthermore, the enhancement factor decreases with the increase of the gate-cathode distance and is equal to β0 = 3.5 + L/ r0 when the gate-cathode distance tends to infinite. The smaller the gate-hole radius, the larger the enhancement factor, and the enhancement factor will be equal β = β0 + 1.202(L/d)^3 when the gatehole radius tends to zero.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第5期3383-3389,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50072029 50572101)资助的课题~~
关键词 栅极调制纳米线 场增强因子 悬浮球 gated nanowire, field enhancement factor, floating sphere
  • 相关文献

参考文献16

  • 1Milne W I, Teo K B K, Chhowalla M, Amaratunga G A J, Pribat D, Legagneux P, Pirio G, Birth V T, Semet V 2002 Curr. Appl. Phys. 2 509
  • 2Chen Q, Dai L 2001 J. Nanosci. Nanotech. 1 43
  • 3Xu X P, Brandes G R 1999 Appl. Phys. Lett. 74 2549
  • 4Lee Y H, Jang Y T, Kim D H, Ahn J H, Ju B K 2001 Adv. Mater. 13 479
  • 5王新庆,王淼,李振华,杨兵,王凤飞,何丕模,徐亚伯.单根纳米导线场发射增强因子的计算[J].物理学报,2005,54(3):1347-1351. 被引量:14
  • 6Wang X Q, Xu Y B, Ge H L, Wang M 2006 Diam. Relat. Mater. 15 1565
  • 7Miller H C 1967 J. Appl. Phys. 38 1450
  • 8Forbes R G, Edgcombe C J, Valdre U 2003 Ultramicroscopy 95 57
  • 9Driskill-Smith A A G, Hasko D G, Ahmed H 1999 Appl. Phys. Lett. 75 2845
  • 10She J C, S Z Deng, Xu N S, Yao R H, Chen J 2006 Appl. Phys. Lett. 88 013112

二级参考文献45

共引文献17

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部