期刊文献+

轨道交通入侵智能监控系统 被引量:1

下载PDF
导出
摘要 智能监控系统是安防系统的重要部分,具有重要的实际应用意义和广泛的应用前景。针对传统的监控系统存在的问题,提出轨道交通入侵智能监控系统的总体流程,研究基于计算机图像处理和模式识别技术的轨道入侵和跟踪智能算法及入侵目标判别规则,并由高阶统计量算法结合聚类算法对序列图像进行处理,最后展望该系统在轨道交通领域的应用。
出处 《中国铁路》 北大核心 2009年第5期62-65,共4页 China Railway
基金 上海高校选拔培养优秀青年教师科研专项基金(06XPYQ35) 上海市教育委员会重点学科建设项目(J51401)
  • 相关文献

参考文献8

  • 1邹芳,肖坦,蒋征朋.视频分析技术综述及铁路应用初探[J].铁路通信信号工程技术,2008,5(3):19-21. 被引量:10
  • 2Zhang ZY. Flexible Camera Calibration By Viewing a Plane From Unknown Orientations[J]. Proceedings of the lnternational Conference on Computer Visin (ICCV' 99) 1999, 666-673
  • 3Stauffer C, Grimson W, Adaptive background mixture models for real-time tracking[C]. Proceedings of IEEE C omputer Society Conference on Computer Vision and P attern Recognition, 1999, 2(6):248--252
  • 4Meier T, Nguo K N. Video Segment, at, ion for Content-B ased Coding[J].lEEE Trans. On Circuits and Systems for Video technology, 1999, 9(8):1190--1205
  • 5Barton J, Fleet D, Beauchemin S. Performance of optical flow techniques [J]. International Journal of Computer Vision, 1994, 12(1):42--77
  • 6艾海舟,乐秀宇.面向视觉监视实时跟踪的动态背景更新方法[J].计算机工程与应用,2001,37(19):104-106. 被引量:25
  • 7杨莉,张弘,李玉山.视频运动对象的自动分割[J].计算机辅助设计与图形学学报,2004,16(3):301-306. 被引量:37
  • 8R E Kalman. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME, Journal of Basic Engineering, 1960, 825(5):55--45

二级参考文献21

  • 1王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 2[1]Horn BK.Schunk BG.Determining optical flow.Artificial Intelligence,1981,17(1-3):185-203.
  • 3[2]Smith SM,Brady JM.ASSET-2:Real-Time motion segmentation and shape tracking.IEEE Trans.on PAMI,1995,17(8):814-820.
  • 4[3]Nerl A,Colonnese S,Russo G,Talone P.Automatic moving object and background separation.Signal Processing,1998,66(2):219-232.
  • 5[4]Meier T,Ngan KN.Automatic segmentation of moving objects for video object plane generation.IEEE Trans.on Circuits and Systems for Video Technology,1998,8(5):525-538.
  • 6[5]Eidder C,Munkelt O,Kirchner H.Adaptive background estimation and foreground detection using Kalman-filter.In:Proc.of the Int'I Conf.on Recent Advances in Mechatronics,ICRAM'95.UNESCO Chair on Mechatronics.1995.193-199.
  • 7[6]Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach.In:Proc.of the 13th Conf.on Uncertainty in Artificial Intelligence(UAI).San Francisco,1997.
  • 8[7]Stauffer C,Grimson WEL.Adaptive background mixture models for real-time tracking.In:Proc.of the IEEE Computer Society Conf.on Computer Vision and Pattern Recognition.Vo12.1999.246-252.
  • 9Nguyen H T, Worring M, Dev A. Detection of moving objects in video using a robust motion similarity measure [J]. IEEE Transactions on Image Processing, 2000, 9(1) : 137- 141.
  • 10Bors Adrian G, Pitas Ioannis. Prediction and tracking of moving objects in image sequence [J]. IEEE Transactions on Image Processing, 2000, 9(8) : 1441-1445.

共引文献69

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部