期刊文献+

上海股市收益率序列簇生特征局部线性平滑分析 被引量:1

Local Linear Smoothing Analysis of Shanghai Stock Market Returns Sequence Clustering Feature
原文传递
导出
摘要 本文从分析上海股票市场收益率序列的基本特征入手,重点利用非参数方法分析收益率序列波动性的簇生特征.首先通过一系列描述指标说明股市收益率序列具有的基本特点,利用非参数方法估计收益率序列的密度函数.进一步利用非参数回归分析的方法,分析股票市场的波动性,说明股市收益率序列的簇生特征是一个一般规律,在防范股市风险的时候应该注意到这一特点. This paper based on the analysis of the Shanghai stock market return sequence of basic characteristic. Focus on the use of non - parametric method sequence analysis yield volatility of the Cluster. At first described by a series of indicators in the stock market return sequence with the basic characteristics. We use non - parametric estimation methods yield sequence density function. Further use of nonparametric regression analysis, analysis of the volatility of the stock market, Note the stock market return sequence Cluster feature is a general law, to prevent the risk of the stock market should take note of this feature.
出处 《数理统计与管理》 CSSCI 北大核心 2009年第3期523-530,共8页 Journal of Applied Statistics and Management
基金 安徽省高校自然科学研究项目(编号:KJ2007B256)
关键词 股市 收益率 簇生 非参数 stock market, rate of return, clustering, nonparametric
  • 相关文献

参考文献12

  • 1Gilles Teyssier, Alan P Kirman (Ed.). Long Memory in Economics [M]. Heidelberg: Springer Berlin, 2007.
  • 2Engle R F. Autoregressive conditional Heteroskedasticity with estimates of the variance of the United Kingdom inflation [J]. Econometrica, 1982, 50: 987-1007.
  • 3Bollerslev T. Generalized autoregressive conditional heteroskedasticity [J]. Econometrics, 1986, 31: 307-327.
  • 4Baillie R T, Boilerslev T and Mikkelsen H O. Fractionally integrated generalized autoregressive conditional heteroskedasticity [J]. Journal of Econometrics, 1996, 74: 3-30.
  • 5Fan J Q, Gu J. Semiparametric estimation of Value at Risk [J]. The Econometrics Journal, 2003, 6(2): 261-290.
  • 6Fan J, Gijbels I. Local Polynomial and Its Application [M]. New York: Chapman & Hall, 1996.
  • 7Fan J, Yao Q. Nonlinear time series: nonparametric and parametric methods [M]. New York: Springer-Verlag, 2002.
  • 8Jones M C. A variation on local linear regression [J]. Statistica Sinica, 1997, 7: 1171-1180.
  • 9Hastie T J, and Tibshirani R J. Generalized Additive Models [M]. London: Chapman & Hall, 1990.
  • 10Morgan J P, Reuters Ltd. RiskMetrics Technical Documents [A]. Fourth Edition, December, 1996.

同被引文献7

  • 1陈卓思,宋逢明.图形技术分析的信息含量[J].数量经济技术经济研究,2005,22(9):73-82. 被引量:16
  • 2欧阳红兵 王小卒.图形技术交易规则的预测能力和盈利能力.中国金融学,2004,(2):129-153.
  • 3Andrew W Lo,Harry Mamaysky,Jiang Wang.Foundations of technical analysis:Computational Algorithms,Statistical inference,and Empirical implementation[J].The Journal of financel5,2000, 8(4):1705-1765.
  • 4Levy R A.The Predictability Significance of Five-Point Chart Patterns[J].Journal of Business,1971, 44(3):316-323.
  • 5J.Fan,I.Gijbels.Local Polynomial Modeling and Its Applications[M] ,New York:Chapman and Hall,1996:1-126.
  • 6李明新.技术分析的统计基础及股票价格的一般分布[D].广州:广州大学,2005:1-45.
  • 7张德丰.MATLAB概率与数量统计分析[M].北京:机械工业出版社,2010.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部