期刊文献+

Development and characteristics analysis of recessed-gate MOS HEMT

Development and characteristics analysis of recessed-gate MOS HEMT
原文传递
导出
摘要 An A1GaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1μm and a source-drain distance of 4μm, exhibits a maximum drain current density of 684mA/mrn at Vgs = 4V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional A1GaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device. An A1GaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1μm and a source-drain distance of 4μm, exhibits a maximum drain current density of 684mA/mrn at Vgs = 4V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional A1GaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第5期32-35,共4页 半导体学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.60736033) the Xi'an Applied Materials Innovation Fund(No.XA-AM-200616)
关键词 high electron mobility transistors A1GAN/GAN recessed-gate dielectric gate high electron mobility transistors A1GaN/GaN recessed-gate dielectric gate
  • 相关文献

参考文献1

二级参考文献15

  • 1Simin G, Koudymov A, Fatima H, Zhang J, Yang J, Khan M A, Hu X, Tarakji A, Gaska R and Shur M S 2002 IEEE Electron. Device Lett. 23 458
  • 2Simon G, X Hu, Ilinskaya N, Zhang J, Tarakji A, Kumar A, Yang J, Khan M A, Gaska R and Shur M S 2001 IEEE Electron. Device Lett. 22 53
  • 3Hu X, Koudymov A, G Simon, Yang J, Khan M A, Tarakji A, Shur M S and Gaska R 2001 Appl. Phys. Lett. 79 2832
  • 4Hashizume T, Ootomo S and Hasegawa H 2003 Appl. Phys. Lett. 83 2952
  • 5Mehandru R, Luo B, Kim J, Ren F, Gila B P, Onstine A H, Abernathy C R, Pearton S J, Gotthold D, Birkhahn R, Peres B, Fitch R, Gillespie J, Jenkins T, Sewell J, Via D and Crespo A 2003 Appl. Phys. Lett. 82 2530
  • 6Hao Z B, Guo T Y, Zhang L C and Luo Y 2006 Chin. Phys. Lett. 23 497
  • 7Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501
  • 8Maeda N, Saitoh T, Tsubaki K, Nishida T and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 987
  • 9Khan M A, Shur M S, Chen Q C and Kuznia J N 1994 Electron. Lett. 30 2175
  • 10Binari S C, Rowland L B, Kelner G, Kruppa W, Dietrich H B, Doverspike K and Gaskill D K 1995 International Symposium Compound Semiconductors () p 459

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部