期刊文献+

基于遗传算法的Tikhonov正则参数优化计算 被引量:3

OPTIMAL CALCULATION OF TIKHONOV REGULARIZATION PARAMETER BASED ON GENETIC ALGORITHM
原文传递
导出
摘要 Tikhonov正则化方法是求解不适定问题的最有效方法之一,而正则参数的计算是这一方法实施的关键。当测量误差水平未知时,通常是采用迭代求解,然而,其正则解对参数的迭代初始值选择具有敏感性,因而不能保证最优。该文视正则参数的计算为优化问题,分别以广义交叉准则(GCV)、L-曲线准则和Engl误差极小化准则为目标函数,基于遗传算法,从全域内获得正则参数的最优值。并对一桁架的荷载分布进行了重构,结果表明,这一方法是寻求最优正则解的一条有效途经。 Tikhonov regularization approach has been accepted as one of the most effective ways to solve ill-posed problems. In the approach, the key step is the calculation of a regularization parameter. Usually, iterative methods are used to obtain the parameter. However, the obtained iterative solutions are sensitive to the initial choice of the parameter, and different initial values may lead to quite different solutions. Presently, the optimal calculation of Tikhonov regulafization parameter is discussed. A method based on the Genetic Algorithm (GA) is proposed, which uses the generalized cross-validation (GCV), L-curve and Engl's error criterion as an optimal function, respectively. Numerical analysis is carried out for the load distribution model of a pin-jointed truss. It is shown that the method can achieve an optimal value of the parameter in the whole range, and therefore provides an efficient way for obtaining an optimal regularization solution.
出处 《工程力学》 EI CSCD 北大核心 2009年第5期25-30,共6页 Engineering Mechanics
基金 广东省高等学校自然科学研究重点项目(06Z013) 教育部高等学校博士学科点专项科研基金项目(20060560003)
关键词 不适定问题 TIKHONOV正则化 遗传算法 最优正则解 有限元 ill-posed problem Tikhonov regularization Genetic algorithm optimal regularization solution finite element
  • 相关文献

参考文献10

  • 1Wang Z, Lin R M, Lim M K. Structural damage detection using measured FRF data [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147: 187- 197.
  • 2Ren W X, Roeck G D. Structural damage identification using modal data.Ⅰ: simulation verification [J]. Joumal of Structural Engineering ASCE, 2002, 128: 87- 103.
  • 3Weber B, Paultre P, Proulx J. Structural damage detection using nonlinear parameter identification with Tikhonov regularization [J]. Structural Control and Health Monitoring, 2007, 14: 406-427.
  • 4Turco E. A strategy to identify exciting forces acting on structures [J]. International Journal for Numerical Methods in Engineering, 2005, 64: 1483- 1508.
  • 5Turco E. Load distribution modelling for pin-jointed trusses by an inverse approach [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165: 261- 306.
  • 6Law S S, Chan T H T, Zhu X Q, Zeng Q H. Regulaxization in moving force identification [J]. Journal of Engineering Mechanics ASCE, 2001, 127: 136- 148.
  • 7Golub G H, Heath M, Wahba G. Generalized Cross-Validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979, 21: 215- 223.
  • 8Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAM Review, 1992, 34: 561- 580.
  • 9Engl H W. Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates [J]. Journal of Optimal Theory and Application, 1987, 52: 209-215.
  • 10Engl H W, Hanke M, Neubauer. Regularization of inverse problems [M]. Dordrecht: Kluwer, 1996.

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部