期刊文献+

基于线性同余算法的格点方法在亚式期权定价中的应用

The linear-congruential-algorithm based lattice method in Asian Option Pricing
下载PDF
导出
摘要 在拟蒙特卡罗方法中,低偏差序列性能的好坏直接决定拟蒙特卡罗估计的有效性,一般常用的拟蒙特卡罗估计使用的是基于(t,m,s)网的低偏序列,然而由这种方法产生的低偏序列在高维时有严重的聚丛现象,对高维时的估计精度有较大影响.使用基于线性同余算法的格点方法估计高维亚式期权的价格,比较了两种方法的计算精度和计算时间,表明格点方法在高维有很好的效果. In Quasi-Monte Carlo method, the function of low-discrepancy sequences determines the efficiency of the estimation and may result in severe clumping phenomena in higher dimension situation and effect the precision of the estimation cousiderably. This paper uses the lattice metmod which is based on linear congruential algorithm to estimate the price of asian option. Comparison of these two methods in precision and time consumed, shows that lattice method works better under high dimension circumstance.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2009年第1期13-15,共3页 Journal of Liaoning Normal University:Natural Science Edition
关键词 拟蒙特卡罗方法 格点方法 线性同余算法 亚式期权定价 Quasi-Monte Carlo lattice method linear-congruenfial-algorithm Asian Option Princing
  • 相关文献

参考文献9

  • 1JOY C,BOYLE P P,TAN K S.Quasi-Monte Carlo methods in numerical finance[J].Management Science,1996,42(6):926-938.
  • 2NIEDERREITER H.Random Number Generation and Quasi-Monte Carlo Methods[M].SIAM.Phiadephia,1992.
  • 3詹惠蓉,程乾生.拟蒙特卡罗法在亚洲期权定价中的应用[J].数学的实践与认识,2005,35(9):20-27. 被引量:8
  • 4KNUTH D E.计算机程序设计艺术:第2卷:半数值算法[M] 苏运霖,译北京:国防工业出版社,2002
  • 5L′ECUYERP.A table of linear congruential generators of different sizes and good lattice structure[J].Mathematics of Computation,1998,68(225):249-260.
  • 6L′ECUYER P,LEMIEUX C.Variance reduction via lattice rules[J].Management Science,2000,46(9):1214-1232.
  • 7L′ECUYER P.Rencent advanced in randomized Quasi-Monte Carlo Methods[J].Monte Carlo and Quasi Monte Carlo Methods,2006.
  • 8TUFFIN B.On the use of low discrepancy sequences in Monte Carlo methods[J].Monte Carlo Methods and Applications,1996,2:295-320.
  • 9马俊海,刘凤琴.基于主成份分析思想的金融衍生证券定价伪蒙特卡罗模拟改进技术[J].系统仿真学报,2002,14(4):436-439. 被引量:6

二级参考文献25

  • 1LEcuyer P, Lemieux C. Recent Advances in Randomized Quasi-Monte Carlo Methods, in Modelling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications[M]. M Dror, P L'Ecuyer, and F Szidarovszki, eds., Kluwer Academic Publishers, 2002. 419-474.
  • 2Hichkernell F J, Lemieux C, Owen A B. Control variates for quasi-Monte Carlo. 2002, Submitted.
  • 3Boyle P, Brodie M, Glasserman P. Monte Carlo methods for security pricing[J]. Journal of Economic Dynamics and Control, 1997, 21: 1267-1321.
  • 4L'Ecuyer P, Lemieux C. Variance reduction via lattice rules[J]. Management Science, 2000, 46 (9): 1214-1235.
  • 5Brandimarte P. Numerical methods in finance /a MATLAB-based introduction[M]. 2002, John Wiley & Sons Inc. , New York.
  • 6Lemieux C, L'Ecuyer P. Efficiency improvement by lattice rules for pricing Asian options[C]. Proceedings of the 1998 Winter Simulation Conference, 1998. 579-585.
  • 7Joy C, Boyle P P, Tan K S. Quasi-Monte Carlo methodsin numerical finance[J]. Management Science, 1996, 42(6): 926-938.
  • 8Bruno M G. Calculation methods for evaluating Asian options. www. luiss. it/documenti/istituti/ ise/review/2001/01/bruno. PDF.
  • 9Tuffin B. On the Use of Low-discrepancy Sequences in Monte Carlo Methods[M]. Technical report No. 1060, I R I S A, Rennes, France, 1996.
  • 10Bratley P, Fox B, Niederreiter H. Implementation and tests of low-discrepancy sequences[J]. ACM Transactions on Modelling and Computer Simulation, 1992, 2: 195-213.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部