期刊文献+

段能量平衡方程组主变量修正法及与其他几种算法的比较

Main-variable Correction of Energy Balance Equations in Zone Method
下载PDF
导出
摘要 详细介绍主变量修正法的原理及求解过程,采用典型算例,从初值要求、迭代次数等方面比较其优越性,进一步证明主变量修正法在求解段能量平衡方程组方面的实用性和优越性. With analysis on physical characteristics of heat transfer in zone method, mathematical-physical characteristics are considered for main-variable correction in zone method. Detailed principle and solution procedure of main-variable correction method is introduced. It is compared with other methods with a typical example. It shows that the main-variable correction method is more reliable and applicable.
出处 《计算物理》 EI CSCD 北大核心 2009年第3期431-436,共6页 Chinese Journal of Computational Physics
关键词 主变量修正法 能量平衡方程 段法 zone method the energy balance equation main-variable correction method
  • 相关文献

参考文献8

  • 1梅炽,曾庆广.炉内辐射换热计算的进展[J].工业炉,1997,19(1):27-30. 被引量:3
  • 2Howell J R,Sigel R.Thermal radiation heat transfer[M].4ed.New York:Taylor & Francis,2002.
  • 3Cort G E,Graham H L,Johnson N L.Comparison of methods for solving non-lingear finnite element equations in heat transfer[R].ASME Paper 82-HT-40,Aug,1982.
  • 4Ness A J.Solution of equations of a thermal network on a digital.Computer[J].Sol Energy,1959,3(2):37.
  • 5KOU Jisheng LIU Dingyou LI Yitian HE Julin.On Newton-Like Methods for Solving Nonlinear Equations[J].Geo-Spatial Information Science,2006,9(1):76-78. 被引量:1
  • 6安恒斌,白中治.关于多元非线性方程的Broyden方法[J].计算数学,2004,26(4):385-400. 被引量:7
  • 7宁宝林,陈海耿.炉子热过程数学模型[M].沈阳:东北工学院热能工程系热过程模型化究室.1990.
  • 8Tan Z.Combined radiative and conductive heat transfer in two-dimensional emitting,absorbing,and anizotropically scattering square media[J].Heat Mass Transfer,1989,16:391-401.

二级参考文献22

  • 1[1]Ostrowski A M (1973) Solution of equations in eucilidean and banach space[M] (3rd ed.).New York:Academic Press
  • 2[2]Jarratt P (1970) A review of methods for solving nonlinear algebraic equations in one variable[M].Rabinowitz P.Numerical Methods for Nonlinear Algebraic Equations.London:Gordon and Breach,1-26
  • 3[3]Weerakoom S,Fernando T G I (2000) A variant of Newton's method with accelerated third-order convergence[J].Applied Mathematics Letters,13(8):87-93
  • 4[4]Frontini M,Sormani E (2003) Some variants of Newton's method with third-order convergence[J].Applied Mathematics and Computation,140:419-426
  • 5[5]Homeier H H H (2005) On Newton-type methods with cubic convergence[J].Journal of Computational and Applied Mathematics,176:425-432
  • 6[6]Wu Xinyuan (2000) A new continuation Newton-like method and its deformation[J].Applied Mathematics and Computation,112(1):75-78
  • 7[7]Wu Xinyuan (2000) On a class of quadratic convergence iteration formulae without derivatives[J].Applied Mathematics and Computation,107:77-80
  • 8[8]Wu Xinyuan (2001) New high-order convergence iteration methods without employing deratives for solving nonlinear equations[J].Computers and Mathematics with Applications,41:489-495
  • 9[9]Wu Xinyuan,Xia Jianlin,Shao Rong (2001) Quadratically convergent multiple roots finding method without derivatives[J].Computers and Mathematics With Applications,42:115-119
  • 10[10]Wu Xinyuan,Xia Jianlin (2003) Error analysis of a new transformation for multiple zeros finding free from derivative evaluations[J].Computers and Mathematics with Applications,46:1 195-1 200

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部