期刊文献+

磁性纳米四氧化三铁选择性富集-电感耦合等离子体原子发射光谱测定砷 被引量:9

Nanomagnetic Material Ferriferrous Oxide Separation/Enrichment and Inductively Coupled Plasma-Atomic Emission Spectrometry for Determination of Arsenic
下载PDF
导出
摘要 基于磁性纳米Fe3O4对砷的选择性富集作用,建立了电感耦合等离子体原子发射光谱(ICP-OES)测定水溶液中砷的方法。考察了溶液酸度、吸附时间、吸附剂用量、试液体积和共存离子等因素对不同形态砷分离富集效率的影响。结果表明,在pH2~10范围内,选用6.0 mg纳米Fe3O4定量富集,振荡2 min后,三价砷、五价砷、一甲基砷以及二甲基砷等均可被磁性纳米Fe3O4定量富集。线性范围为0.063~20 mg/L;检出限(3σ)为0.0189 mg/L;对砷标准溶液测定的相对标准偏差为1.27%(n=6)。用本方法对自来水中加入的砷标准溶液进行了测定,回收率为100.3%~104.8%。本方法简便快速,可用于复杂基体中低含量砷的富集分离和测定。 Using a magnetic separation teehnique, the novel separation and preeoneentration technique for the determination of trace As in water samples was established. Arsenic levels can be determined by ICP-AES. The adsorption behavior of arsenic speciation on nanomagnetic material Fe3O4 was investigated, pH values for solution, time of adsorption, amounts of adsorbent, volumes of solutions and the co-existent ions were considered. At pH 2 - 10, As (Ⅲ) , As ( Ⅴ ) , monomethylarsenie (MMA) and dimethylarsenie (DMA) were retained on 6.0 mg nanomagnetic Fe3O4 after shaking 2 min. Extractions were performed in test tubes eontaining 10 g arsenic ions at pH 5, using 6.0 mg nanomagnetie material Fe3O4. They are attraeted to a magnetie field and can be separated from solution within a minute with a magnet. The detection limit (3σ) was 0. 0189 mg/L with relative standard deviations of 1.3%. It was obtained a wide linear range of 0. 063 - 20 mg/L and the recovery is 100.3% - 104.8%.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2009年第5期711-714,共4页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.20775041)资助项目
关键词 纳米四氧化三铁 磁性分离富集 电感耦合等离子体原子发射光谱 Nanomagnetic ferriferrous oxide material, magnetic separation and concentration technique, inductively coupled plasma atomic emission spectrometry, arsenic
  • 相关文献

参考文献10

二级参考文献19

  • 1弓晓峰,陈春丽,Barbara Zimmermann,赵晋,周文斌.ICP-AES测定湖泊沉积物中微量元素的样品微波消解研究[J].光谱学与光谱分析,2007,27(1):155-159. 被引量:33
  • 2曲蛟,袁星,王莉莉,王楠.钼矿区土壤中重金属污染状况的分析与评价[J].环境保护科学,2007,33(2):36-38. 被引量:18
  • 3Stanhope K G, Young S D, Hutchinson J J, et al. Environmental Science & Technology, 2000, 34: 4123.
  • 4Salt D E, Blaylock M, Kumar N P B A, et al. Biotechnology, 1995, 13(5): 468.
  • 5Stomp A M, Han K H, Wilbert S, et al. Recombinant and Technology Ⅱ, 1994, 721: 481.
  • 6Bo Stromberg, et al. Applied Geochemistry, 1994, 9(2): 583.
  • 7WEI Guan-jun(韦冠俊).Environmental Engineering of Mine(矿山环境工程).Beijing:Metalurgical Industry Press(北京:冶金工业出版社),2001.
  • 8Capar S G, Mindak W R, Cheng J. Anal. Bioanal. Chem. , 2007, 389:159-169
  • 9Krzysztof L, Wiechula D. Microchim. Acta, 2006, 154(3/4) : 235 -240
  • 10Li Z, Yang X, Guo Y, Li H, Feng Y. Talanta, 2008, 74:915-921

共引文献47

同被引文献535

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部