期刊文献+

磁场沉积态FeCuCrVSiB薄膜的软磁特性和巨磁阻抗效应 被引量:1

SOFT MAGNETIC PROPERTIES AND GIANT MAGNETOIMPEDANCE EFFECT IN MAGNETIC FIELDDEPOSITED FeCuCrVSiB FILMS
下载PDF
导出
摘要 采用射频溅射法,在无磁场和施加72 kA/m的纵向磁场下制备了FeCuCrVSiB软磁合金薄膜样品,对沉积态样品的软磁特性和巨磁阻抗(GMI)效应进行了测量和分析.结果表明,在制备过程中加磁场可明显改善材料的软磁性能,与无磁场沉积态相比,样品的矫顽力从1.080 kA/m降低到0.064 kA/m,在13 MHz频率下有效磁导率比从10%增加到106%.GMI效应与磁导率比的大小密切相关.无磁场沉积态样品没有检测到GMI效应,而磁场沉积态样品则具有显著的GMI效应.在13 MHz的频率下,最大纵向和横向巨磁阻抗比分别高达22%和20%.这些结果都优于厚度几乎相同的退火态FeCuNbSiB薄膜的GMI特性. FeCuCrVSiB soft magnetic films have been prepared using radio frequency sputtering without or with a constant magnetic field of about 72 kA/m along the longitudinal direction of film plane, and then their soft magnetic properties and giant magnetoimpedance (GMI) effects were measured. The results obtained show that the magnetic field applied during the deposition process improves significantly the soft magnetic properties of the sample. For example, its coercive force decreases from 1.080 kA/m of the non-field-deposited state to around 0.064 kA/m and its effective permeability ratio increases from 10% to 106%. The GMI effect is closely connected with this permeability ratio. The GMI effect can not almost be detected in non-field-deposited samples, while it becomes evident for field-deposited samples. The maximum values of longitudinal and transverse GMI ratios are 22% and 20% at the frequency of 13 MHz, respectively. The GMI effect in the field-deposited sample is much better than in annealed FeCuNbSiB film with the same thickness.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2009年第5期615-619,共5页 Acta Metallurgica Sinica
基金 浙江省科技计划重点资助项目2006C21085
关键词 FeCuCrVSiB薄膜 巨磁阻抗效应 软磁特性 FeCuCrVSiB film, giant magnetoimpedance effect, soft magnetic property
  • 相关文献

参考文献12

  • 1Panina L V, Makhnovskiy D P, Mohri K. J Magn Magn Mater, 2004; 272 276:1452
  • 2Kuzminski M, Nesteruk K, Lachowicz H K. Sens Actuators, 2008; 141A: 68
  • 3Correa M A, Viegas A D C, da Silva R B, de Andrade A M H, Sommer R L. J Appl Phys, 2007; 101:043905
  • 4Muraca D, Cremaschi V, Knobel M, Sirkin H. J Magn Magn Mater, 2008; 320:2068
  • 5辛宏梁,袁望治,程金科,林宏,阮建中,赵振杰.NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性[J].物理学报,2007,56(7):4152-4157. 被引量:7
  • 6Amalou F, Gijs M A M. J Appl Phys, 2004; 95:1364
  • 7袁慧敏,姜山,王文静,颜世申,萧淑琴.制备态FeZrBNi/Ag/FeZrBNi三层膜的巨磁阻抗效应[J].金属学报,2006,42(9):971-973. 被引量:3
  • 8Xiao S Q, Liu Y H, Dai Y Y, Yan S S, Dai Y Y, Zhang L, Mei L M. Phys Rev, 2000; 61B: 5734
  • 9Sommer R L, Chen C L. Appl Phys Lett, 1995; 67:3346
  • 10Yoshizawa Y, Yamauchi K. J Appl Phys, 1988; 64:6044

二级参考文献27

共引文献13

同被引文献7

  • 1周勇,丁文,陈吉安,高孝裕,王明军,张亚民.薄膜厚度对多层膜巨磁阻抗效应的影响研究[J].功能材料与器件学报,2004,10(2):165-170. 被引量:2
  • 2Mohri K,Kohzawa T,Kawashima K,Yoshida H and Panina L V. Magneto-inductive effect in amorphous wires[J].IEEE Transactions on Magnetics,1992,(05).
  • 3Sommer R L,Chien C L. Longitudinal and transverse magneto-impedance in amorphous FeCuNbSiB films[J].Applied Physics Letters,1995,(22).
  • 4Suzuki K. High Saturation Magnetization and Soft Magnetic Properties of bcc Fe-Zr-B and Fe-Zr-B -M (M =Transition Metal) Alloys with Nanoscale Grain Size[J].Materials Transactions-Japan Institute of Metals,1991,(01).
  • 5孙光飞;强文江.磁功能材料[M]北京:化学工业出版社,2007.
  • 6葛副鼎,库万军,朱静.软磁薄带巨磁阻抗效应的数值分析[J].功能材料与器件学报,1997,3(4):217-222. 被引量:3
  • 7王宗篪.纵向驱动巨磁阻抗效应的解释[J].集美大学学报(自然科学版),2002,7(1):66-69. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部