摘要
设A=(aij)∈Cn×n,若存在α∈(0,1),使i∈N={1,2,…,n},|aii|≥Riα(A)Si1-α(A),则称A为Ostrowski对角占优矩阵。首先推广Ostrowski对角占优矩阵的概念到广义Ostrowski对角占优矩阵;最后得到了判别非奇异H-矩阵的一个判定方法。进一步丰富和完善了Ostrowski对角占优矩阵和非奇异H-矩阵的理论,为计算数学、矩阵论、控制论、经济数学等相关领域的研究奠定了坚实的基础。
Let A=(aij)∈C^n×n, if there exists α∈(0,1) which can make |aii≥Ri^α(A)Si^1-α(A) be right for arbitary i∈N={1,2,…,n}, then A is called an Ostrowski diagonally dominant matrix. We extended the concept to generalized Ostrowski diagonally dominant matrix,and obtained a new criteria conditions for a matrix to be a nonsingular H-matrix. The theory of Ostrowski diagonally dominant matrix and nonsingular H-matrix was improved and completed. These conclusions provide strong basis for the research of relative fields, such as computational mathematics, matrix theory, control theory, mathematieal economies, etc.
出处
《辽宁石油化工大学学报》
CAS
2009年第2期78-80,84,共4页
Journal of Liaoning Petrochemical University
基金
辽宁省教育厅高校科研项目(2004F100)