期刊文献+

工程陶瓷磨削表面裂纹损伤深度模型研究 被引量:2

Research on the Model of Surface Damage Depth in Engineering Ceramics Grinding
下载PDF
导出
摘要 使用金刚石砂轮磨削是对陶瓷进行加工最常用的方法,但由于磨削抗力大,使被磨陶瓷零件常常会产生裂纹等表面损伤。文章基于压痕断裂力学建立陶瓷磨削表面裂纹损伤深度模型,通过针对氮化硅材料进行单行程磨削实验和表面裂纹损伤深度观测实验,确定了损伤深度模型中的参数,并对模型预测结果和实验结果进行比较,验证了陶瓷磨削表面裂纹损伤深度模型的有效性。陶瓷磨削亚表面裂纹损伤深度正比例于磨削深度和工件台速度,反比例于砂轮转速,其中磨削深度对陶瓷磨削表面裂纹损伤深度的影响最高。运用该模型,根据磨削输入参数可以预测和控制陶瓷的磨削损伤深度,从而可以优化陶瓷磨削过程,提高磨削效率、降低加工成本和降低加工损伤。 Diamond grinding is a common way for ceramics grinding, but workpieces ground always produce some surface damage like cracks because the resistance force of grinding is big. Based on Indentation Fracture Mechanics,a model on the crack depth of surface in ceramics grinding was established, through carrying out one-way trip grinding experiments and surface crack depth observation of silicon nitride, correctness of a mod- el for the ground surface crack depth of silicon nitride was proved. The damage depth of sub-surface crack in ceramics grinding is in direct prop ortion to grinding depth and sp eed of workp iece p latform,inverse prop ortion to speed of grinding wheel,grinding depth has the biggest impact on it.By inputing grinding parameters into this model, the grinding surface damage depth of ceramics can be predicted.This allows optimization of the ceramic grinding process by which we can increase the productivity,and reduce the grinding damage and the processing costs.
出处 《组合机床与自动化加工技术》 北大核心 2009年第5期10-13,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(50475114)资助項目
关键词 工程陶瓷 磨削 表面损伤深度 裂纹 模型 engineering ceramics grinding damage depth of the surface crack model
  • 相关文献

参考文献12

  • 1Zhang B, Howes T D. Material - Removal Mechanisms in Grinding Ceramics[ J]. Annals of the CIRP, 1994,43 ( 1 ) : 305 - 308.
  • 2Zhang Guangxiu,Lin Bin and Shi Zhenpeng,Study on the Correlativity between Grinding Parameters and Surface Residual Stresses in Ceramic [ J], Key Engineering Materials, 2008, 375 -376:480 -484.
  • 3Chiang S S,Marshall D B, Evans A G. The Response of Solids to Elastic/Plastic Indentation Ⅱ. Fracture Initiation [ J ] , J. Appl. Phys. ,1982,53(1) :312 -317.
  • 4Bifano T G, Dow T A. Scattergood R O. Ductile - Regime Grinding: A New Technology for Machining Brittle Materials [ J ]. Transactions of the ASME, 1991,13 : 184 - 189.
  • 5Zhang B,Howes T D. Subsurface Evaluation of Ground Ceramics[ J], Annals of the CIRP, 1995,44( 1 ) :263 - 267.
  • 6Marshall D B. Geometric Effects in Elastic/Plastic Indentation [J],J. Amer. Ceram. Soc. ,1984,67:57-60.
  • 7Lawn B R,Evans A G. A Model for Crack initiation in Elastic/ Plastic Indentation Field [ J ]. Journal of Materials Science, 1977,12:2195 - 2199.
  • 8Malkin S, Anderson R B, Thermal aspects of grinding, Part I: Energy partition[J], ASME J. Eng. Ind. 96(1974)1177- 1183.
  • 9Kun L,Liao T W. Modeling of Ceramic grinding processes part I,Number of cutting points and grinding forces per grit [ J ]. Journal of Materials Processing Technology, 1997,65 ( 1 - 3 ) : 1 -10.
  • 10Lawn B R,Evans A G, Marshall D B. , Elastic/Plastic Indentation Damage in Ceramics:The Median/Radial Crack System [J].J. Amer. Ceram. Soc.,1980,63:574-581.

二级参考文献1

共引文献5

同被引文献8

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部