期刊文献+

两矩阵乘积的{1,3M,4N}-逆的反序

On Reverse Order Law for {1 ,3M ,4N}-inverse of Two Matrix Product
下载PDF
导出
摘要 利用广义Schur补的极大秩研究了两个矩阵乘积的{1,3M,4N}-逆的反序,给出了反序B{1,3N,4K}A{1,3M,4N}■(AB){1,3M,4K}成立的充分必要条件. In this paper, we study the reverse order law for {1,3M,4N}-inverse of two matrix product by using the maximal rank of generalized Schur complement. We derive the equivalent condition for B{1,3N,4K}A{1,3M,4N} lohtain in (AB){1,3M,4K} .
作者 秦莹莹
机构地区 五邑大学数理系
出处 《五邑大学学报(自然科学版)》 CAS 2009年第2期55-58,共4页 Journal of Wuyi University(Natural Science Edition)
关键词 反序 广义逆 加权广义逆 矩阵的极大秩 广义SCHUR补 reverse order law generalized inverse weighted generalized inverse matrix maximal rank generalized Schur complement
  • 相关文献

参考文献7

  • 1BEN-ISRAEL A, GREVILLE T N E. Generalized inverse: theory and applications [M]. 2nd ed. New York: Springer-Verlag, 2002.
  • 2WANG G, WEI Y, QIAO S. Generalized inverse: theory and computations [M]. Beijing: Science Press, 2004.
  • 3GREVILLE T N E. Note on the generalized inverse of a matrix product [J]. SlAM Review, 1966, 8: 518-521.
  • 4WERNER H J. When is B-A-a generalized inverse of AB [J]. Linear Algebra Appl, 1994, 210: 255-263.
  • 5BARTWICK D T, GILBERT J D. On generalization of the reverse order law with related results [J]. SIAM J Appl Math, 1974, 27: 326-330.
  • 6HARTWIG R E. The reverse order law revisited [J]. Linear Algebra Appl, 1986, 76: 241-246.
  • 7TIAN Y. More on maximal and minimal ranks of Schur complements with applications [J]. Appl Math Comput, 2004, 152: 675-692.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部