期刊文献+

基于有限元仿真的5083铝合金支架超塑性差温拉深

Superplastic differential temperature drawing of 5083 aluminum alloy bracket based on finite element simulation
下载PDF
导出
摘要 为提供试验依据,应用IA软件计算零件毛料尺寸,导入MSC.Marc软件模拟超塑差温拉深,并依据模拟结果优化毛料尺寸。模拟中温度分若干梯度,假定材料同梯度内同力学性能,利用二次开发将各梯度材料本构关系植入模拟,获得5083铝合金支架超塑差温拉深成形工件及壁厚分布,其结果与试验吻合良好,且较恒温拉深理想。讨论了成形温度梯度宽对差温拉深模拟结果的影响。 To provide the basis for experiment, superplastic differential temperature drawing was simulated in software MSC. Marc with initial blank calculated by software IA and the shape of blank was optimized according to the simulation results. In this simulation, forming temperature was divided into some gradients and it was assumed that material property behaved similarly in the same gradient. The assumption was implanted in software MSC. Marc through new complied subroutine about constitutive equation. Under the guide of the analysis, a 5083 aluminum alloy bracket was successfully manufactured. Good agreement was obtained between the predicted profile based on simulation and measured thickness distribution. Moreover, the results of differential temperature drawing were compared with one of isothermal drawing. The influence of temperature grads on the predicted result was also discussed.
出处 《塑性工程学报》 CAS CSCD 北大核心 2009年第3期64-68,共5页 Journal of Plasticity Engineering
关键词 超塑性 有限元仿真 差温拉深 子程序 5083铝合金 superplasticity finite element simulation differential temperature drawing subroutine 5083 aluminum alloy
  • 相关文献

参考文献10

  • 1Hwang Y M, Lay H S. Study on superplastic blowforming in a rectangular closed-die[J]. Journal of Materials Processing Technology, 2003. 140: 426-431
  • 2张国泽,叶旭明.超塑性合金的差温拉深与立体胀形[J].热加工工艺,2004,33(6):43-44. 被引量:3
  • 3吴德忠,张凯峰.差温拉深/超塑性胀形复合工艺研究[J].哈尔滨工业大学学报,2000,32(5):114-115. 被引量:2
  • 4文九巴杨蕴林等.超塑性应用技术[M].北京:机械工业出版社,2005:143-149.
  • 5Yang L F, Mori K I, Tsuji H. Deformation behaviors of magnesium alloy AZ31 sheet in cold deep drawing[J]. Transactions of Nonferrous Metals Society of China (English Edition) ,2008. 18(1) :86-91
  • 6Onder E, Tekkaya A E. Numerical simulation of various cross sectional workpieces using conventional deep drawing and hydroforming technologies[J]. International Journal of Machine Tools and Manufacture, 2008. 48(5) : 532-542
  • 7Narayanasamy R,Ponalagusamy R. The effect of strain rate sensitivity on theoretical prediction of limiting draw ratio for cylindrical cup drawing process[J]. Materials and Design, 2008. 29 (4): 884-890
  • 8Singh S K, Kumar D R. Numerical prediction of limiting draw ratio and thickness variation in hydromechanical deep drawing[J]. International Journal of Materials and Product Technology, 2004. 21(1) :106-123
  • 9Krajewski P E, Montgomery G P. Mechanical behavior and modeling of AA5083 at 450℃ [C]// Advances in Superplasticity and Superplastic forming[C]. USA: The Minerals,Metal & Material society, 2004 : 341-350
  • 10Verma R,Kim S. Superplastic behavior of copper-modified 5083 aluminum alloy[J]. Journal of Materials Engineering and Performance,2007. 16(2):185-191

二级参考文献7

  • 1何景文 王燕文.金属的超塑性[M].北京:科学出版社,1992..
  • 2陈浦泉.组织超塑性[M].哈尔滨:哈尔滨工业大学出版社,1998..
  • 3OA卡依勃舍夫.金属的塑性和超塑性[M].北京:机械工业出版社,1982..
  • 4陈浦泉,组织超塑性,1998年
  • 5何景文,金属的超塑性,1992年
  • 6ПФ楚达列夫 梁炳文.金属深压延的研究[M].北京:国防工业出版社,1957..
  • 7西村尚 宫川松男 川上芳正.广し温度域にずけるZn—22Al超塑性板の深绞り成形[J].塑性と加工,1975,16(177):955-962.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部