摘要
提出一种基于几何图像的点云数据简化算法,该算法将基于几何图像的简化与随机采样相结合,首先将点集合的笛卡尔坐标转换为球面极坐标,再将球面极坐标重采样到灰度图像中,然后基于几何图像进行简化,最后引入随机采样来填补几何图像简化所产生的孔洞。实验证明了该算法的正确性和高效性。
This paper presents a point cloud simplification algorithm based on the combination of geometry image and random sampling methods. First, the algorithm transfers point-sampled models from Descartes coordinate into according spherical polar coordinate. And the geometry image is created by projecting its spherical polar coordinates onto a plane. The point cloud is simplified by the created geometry image. And the random sampling methods is applied to make up the holes cy and simpleness.
出处
《苏州大学学报(工科版)》
CAS
2009年第2期13-16,共4页
Journal of Soochow University Engineering Science Edition (Bimonthly)
基金
国家自然科学基金资助项目(编号60775045)
关键词
点云简化
几何图像
随机采样
point induced by geometry image simplification. Some cloud simplification
geometry experiments prove the present algorithm's efficienImage
random sampling