期刊文献+

L_2(R^2;e^(-x^2-y^2))中一个特殊函数类的Kolmogorov n-宽度及最佳逼近的界的估计 被引量:2

Estimates of the bounds of best approximation and Kolmogorov n-width of a special class of functions in L_2(R^2;e^(-x^2-y^2))
下载PDF
导出
摘要 利用一个平移算子Fh定义了高阶差分Δhk(f),进而定义广义连续模Ωk(f;δ),在空间L2(R2;e-x2-y2)中引入一个二阶微分算子D,由此来定义函数类Wφr,k(D).借鉴文献[1]中的一些结论及研究方法来研究类似文献[5-7]中所讨论的问题,最后得到了supf∈Wγφ,k(D)En(f;L2)和dn(Wωγ,k(D);L2)界的估计. In this paper, the high-order difference Δ^kh (f) is defined by a translation operator Fh. Then the generalized modulus of continuity Ωk(f;δ) is defined. A second order differential operator D is introduced in L2(R^2;e^-x^2-y^2),by which the function class W^r,kφ(D) is defined. The conclusions and research methods in reference[1] are used to study problems discussed in references [5] [6] [7]. At last, the bounds of supf∈Wγφ,k(D)En(f;L2) and dn(W^γ,kω(D);L2) are estimated.
出处 《沈阳工程学院学报(自然科学版)》 2009年第2期190-192,共3页 Journal of Shenyang Institute of Engineering:Natural Science
关键词 差分 广义连续模 Kolmogorovn-宽度 difference generalized modulus of continuity Kolmogorov width
  • 相关文献

参考文献6

  • 1Abilov V A,Abilov M V.Approximation of Functions in the Space L2(RN;e-∣x∣2)(in Russian)[J].Mathematical Notes,1995,57(1):3-19.
  • 2耿爱成,刘永平.L_2中的某些特殊函数类的Kolmogorov n-宽度[J].北京师范大学学报(自然科学版),2007,43(5):496-500. 被引量:2
  • 3Allan Pinkus.Widths in Approximation Theoty[M].New York:Springer-Verlag,1985.
  • 4Abilov V A,Abilov M V,Kerimov M K.Some problems concerning the convergence of double Fourier-Hermite series (in Russian)[J].Computational Mathematics and Mathe matical Physics,2004,44(2):213 -230.
  • 5Abilov V A.Kerimov M K.Some Estimates for the Error in Mixed Fourier-Bessel Expansions of Functions of Two Var iables[J].Computational Mathematics and Mathematical Physics,2006,46(9):1465-1486.[4]Allan Pinkus.Widths in Approximation Theory[M].NewYork:Springer-Verlag,1985.
  • 6刘适达,刘适式.特殊函数[M].2版.北京:气象出版社,2002.

二级参考文献6

  • 1Abilov V A, Abilova F V. Problems in the approximation of 2π-- periodic functions by fourier sums in the space L2 (2π)[J]. Mathematical Notes, 2004, 76 (6) :749.
  • 2Pinkus Allan. n--Widths in approximation theory[M]. New York: Springer-Verlag, 1985.
  • 3Vakarchuk S B. On best polynomial approximation in L2 of certain classes of 2π-periodic functions and of exact values of their n-widths[J]. Mathematical Notes, 2001, 70(3) : 300.
  • 4Vakarchuk S B. Exact constants in jachson-type Inequalities and exact values of widths[J]. Mathematical Notes, 2005, 78(5) :735.
  • 5Butzer P L, Westphal U. An access to fractional differentiation via fractional difference quotients, lecture notes in mathematics 475[M]. New York: Springer- Verlag, 1975:116-145.
  • 6刘永平.L^2(R)中界于连续模的光滑函数类的平均σ-K宽度[J].北京师范大学学报(自然科学版),1993,29(1):44-49. 被引量:1

共引文献1

同被引文献8

  • 1耿爱成.空间L_2(R^2;e^(-x^2-y^2))中的函数逼近[J].沈阳工程学院学报(自然科学版),2012,8(4):378-380. 被引量:1
  • 2ABILOV V A, ABILOV M V. Approximation of Functions in the Space L2 (RNe- 141 z)(in Russian)[J]. Mathematical Notes, 1995,57(1) :3-19.
  • 3ABILOV V A,ABILOV M V. Certain problems of the approximation of functions in two variables by Fourier-Hermite sums in the space L2 ( R 2 ;e-x2 -y2 ) [J]. Analysis Mathematiea,2006,32(3) : 163-171.
  • 4ABILOV V A,ABILOVA F V. Some problems of the approximation of functions by Fourier-Hermite sums in the space Lz ( R2 e-x2) (in Russian)[J]. Izv Vyssh Uchebn Zaved Mat,2006,1 :3-12.
  • 5ABILOV V A,ABILOV M V,KERIMOV M K. Some problems concerning the convergence of double Fouricr-Laguerre-Hermite series (in Russian)[J]. Computational Mathematics and Mathematical Physics,2004,44(2) :213-230.
  • 6ABILOV V A,KERIMOV M K. Some Estimates for the Error in Mixed Fourier-Bessel Expansions of Functions of Two Variables [J]. Computational Mathematics and Mathematical Physics,2006,46(9): :1465-1486.
  • 7ABILOV V A,KERIMOV M K. Some problems of expansion of functions in double Fourier-Hermite-Jacobi series (in Russian)[J]. Computational Mathematics and Mathematical Physics ,2004,44 (9) : 1596-1607.
  • 8耿爱成,王树新.L_2中的Jackson不等式与函数类的Kolmogorov n-宽度[J].辽宁师范大学学报(自然科学版),2012,35(3):300-304. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部