摘要
利用一个平移算子Fh定义了高阶差分Δhk(f),进而定义广义连续模Ωk(f;δ),在空间L2(R2;e-x2-y2)中引入一个二阶微分算子D,由此来定义函数类Wφr,k(D).借鉴文献[1]中的一些结论及研究方法来研究类似文献[5-7]中所讨论的问题,最后得到了supf∈Wγφ,k(D)En(f;L2)和dn(Wωγ,k(D);L2)界的估计.
In this paper, the high-order difference Δ^kh (f) is defined by a translation operator Fh. Then the generalized modulus of continuity Ωk(f;δ) is defined. A second order differential operator D is introduced in L2(R^2;e^-x^2-y^2),by which the function class W^r,kφ(D) is defined. The conclusions and research methods in reference[1] are used to study problems discussed in references [5] [6] [7]. At last, the bounds of supf∈Wγφ,k(D)En(f;L2) and dn(W^γ,kω(D);L2) are estimated.
出处
《沈阳工程学院学报(自然科学版)》
2009年第2期190-192,共3页
Journal of Shenyang Institute of Engineering:Natural Science