期刊文献+

离散不确定系统的鲁棒预测控制 被引量:2

Robust Model Predictive Control for Uncertain Discrete-time Systems
下载PDF
导出
摘要 对预测控制中模型不确定性的处理一直是预测控制算法亟待解决的问题。考虑一类包含模型不确定性的控制对象模型,提出一种极大极小预测控制器设计方法。在滚动优化的每一步,考虑了状态变量不完全可测的情况,引入动态输出反馈的思想得到一个最坏条件下的性能指标的最优解,以最坏条件下的性能指标为求解优化问题的上界,通过线性矩阵不等式的方法求解凸优化问题。并从理论上证明了所设计的鲁棒预测控制器对不确定模型是稳定的。通过仿真算例的分析,证明了极大极小鲁棒预测控制器设计的有效性。 The model uncertainty problem in model predictive control is discussed. A uncertain discrete-time model that allows explicit incorporation of the description of model uncertainty is considered. A max-min model predictive controller is presented. In the case that not all states are available, a dynamic output feedback law is introduced at each iteration, which minimizes a 'worst-case' infinite horizon objective function. And the problem of minimizing an upper bound on the 'worst-case' objective function is reduced to a convex optimization involving linear matrix inequalities. The stability of the closed-loop system is proved. The simulation results show the effectiveness of max-min model predictive controller.
出处 《控制工程》 CSCD 北大核心 2009年第3期294-298,共5页 Control Engineering of China
基金 国家自然科学基金资助项目(60474040) 沈阳市科技计划基金资助项目(10220360-1-07)
关键词 离散系统 鲁棒预测控制 输出反馈 不确定性 线性矩阵不等式 discrete-time systems robust model predictive control output feedback uncertainty linear matrix inequalities
  • 相关文献

参考文献11

  • 1Compo P J, Morari M. Robust predictive control [ C ]. Proc American Control, 1987.
  • 2Hu L S, Huang B, Cao Y Y. Robust digital model predictive for linear uncertain system with saturations [ J 1. IEEE Transactions on Automatic Control ,2004,49 ( 5 ) :792-796.
  • 3Kothare M, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities [ J ]. Automafica, 1996,32(10) :1361-1379.
  • 4Lee J H, Yu Z H. Worst-case formulations of model control for systems with bounded parameters [ J ]. Automatica, 1997,33 ( 5 ) :763 - 781.
  • 5李亚东,李少远.基于LMI的多模型鲁棒预测控制[J].控制理论与应用,2002,19(6):829-832. 被引量:8
  • 6Lu Y H,Arkun Y. Quasi-min-max MPC algorithms for LPV systems [ J ]. Automatica ,2000,36 (4) :527 -540.
  • 7Rawling J, Muske K. The stability of constrained receding horizon control[ J ]. IEEE Transactions on Automatic Control, 1993,38 (10): 1512-1216.
  • 8Mayne D Q, Rawings J B, Rao C V. Constrained model predictive control : stability and optimality [ J ]. Automatica,2000,36 ( 6 ) :789- 814.
  • 9Xie L. Output feedback H∞ control of system with parameter uncertainty[J].Int J Control,1996,63(4) :741-750.
  • 10Wan Z Y, Kothare M V. Robust output feedback model predictive control using off-line matrix inequalities [ C ]. Arlington, VA: The 2001 Ameriean Control Conference,2001.

二级参考文献7

  • 1Kothare M V, Balakrishman V, Morari M. Robust consaained mod el predictive control using linear matrix inequalities [ J]. Automatica, 1996,32(10): 1361 - 1379
  • 2Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia, Pennsylvani a:SIAMStudies in Applied Methematics, 1994
  • 3Vanantwerp J G, Braatz R D. A tutorial on linear and bilinear matrixinequalities [J]. J. Process Control, 2000,10(4):363 -385
  • 4Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model pre dictive control: stability and optimality [J]. Automatica, 2000,36 (6) :789 - 814
  • 5Rawlings J B, Muske K R. The stability of constrained receding horizon control [ J ]. IEEE Trans. Automation Control, 1993, 38 (10): 1512 - 1516
  • 6Sutton G J, Bitmead R R. Robust stability theorems for nonlinearpredictive control [A]. Proc. of 36th Conf. on Decision & Control[C]. San Diego, 1997,4886-4890
  • 7Lee Y I, Kouvaritakis B. Linear matrix inequalities and polyhedral invariant sets in constrained robust predictive control [A]. Proc. of American Control Conference [ C]. San Diego, 1999,657 - 661

共引文献7

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部