期刊文献+

大规模离散线性系统的分散饱和反馈镇定(英文) 被引量:1

Stabilization of Discrete-time Large-scale Linear Systems under Actuator Saturation by Decentralized Feedback
下载PDF
导出
摘要 考虑了具有执行器饱和的大规模离散时间线性系统分散控制器的设计。首先进行了在执行器幅值饱和的情形下的研究,然后延伸到执行器具有多层饱和的情况,例如,幅值和速率同时存在饱和或通过多层神经元网络近似的执行器非线性。在这2种情况下,给出了闭环系统在分散状态反馈律的作用下,椭球收敛不变性的条件。基于这些条件,可取得大吸引域的分散状态反馈控制律的设计可以归结为具有双线性矩阵不等式(BM I)约束的优化问题。对这些双线性约束优化问题提出了数值算法。数值算例显示了所提出的设计方法的有效性。 The design of decentralized controllers for discrete-time large-scale linear systems under actuator saturation is considered. The development is first carried out in the situation when on actuator magnitude saturation is presented and then extended to the situation where the actuators are subject to nested saturation, which represents, for example, simultaneous actuator magnitude and rate saturation and approximation of actuator nonlinearities by muhi-layer neural networks. In both situations, for the closed-loop system under a saturating decentralized state feedback law, conditions are identified under which an ellipsoid is contractively invariant and thus within the domain of attraction. Based on these conditions, the design of decentralized state feedback laws that achieve large domains of attraction can be formulated as optimization problems with bilinear matrix inequality(BMI) constraints. Numerical algorithms are developed to solve these BMI problems. Numerical examples are used to demonstrate the effectiveness of design method.
作者 吕亮 林宗利
出处 《控制工程》 CSCD 北大核心 2009年第3期304-313,317,共11页 Control Engineering of China
关键词 分散控制 离散时间 大规模系统 执行器饱和 多层饱和 decentralized control discrete-time large-scale systems actuator saturation nested saturation
  • 相关文献

参考文献26

  • 1Bakule L. Decentralized control: an overview[J].Annual Review in Control,2008,32( 1 ) :87-98.
  • 2Lunze J. Feedback control of large-scale systems [ M ]. London : Prentice Hall, 1992.
  • 3Siljak D D. Decentralized control of complex systems [M]. New York : Academic Press. 1991.
  • 4Singh M G. Decentralized control [ M ]. Amsterdam: North Holland, 1991.
  • 5Guo Y,Hill D J, Wang Y. Nonlinear decentralized control of largescale power systems [ J]. Automatica,2000,36 ( 9 ) : 1275-1289.
  • 6Lynch J P, Law K H. Decentralized control techniques for largescale civil structural systems [ C ]. Los Angeles, California: Proceedings of the 20th International Modal Analysis Conference, 2002.
  • 7Hill D J, Wen C, Goodwin G C. Stability analysis of decentralized robust adaptive control [ C ]. Austin, Texas: Proceedings of the 27th Conference on Decision and Control, 1988.
  • 8Feddema J T, Lewis C, Schoenwald D A. Decentralized control of cooperative robotic vehicles: theory and application [ J ]. IEEE Transactions on Robotics and Automation ,2002,18 (5) :852-864.
  • 9Kosuge K, Oosumi T. Decentralized control of multiple robots handling an object [ C ]. Osaka, Japan:Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.
  • 10Bartholdi J J, Platzman L K. Decentralized control of automated guided vehicles on a simple loop [ J]. IIE Transactions, 1989,21 ( 1 ) :76-81.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部