期刊文献+

选矿过程工艺指标确定方法及应用 被引量:4

Approach for Determining Technical Indices in Mineral Process and its Applications
下载PDF
导出
摘要 当前选矿生产实现了对个别工序工艺指标的优化控制,但各工序的工艺指标目标值仍然由选矿工程师根据入选原矿情况来确定,具有较大的模糊性与随意性,各工序之间不能有效协调,无法满足对更好综合生产指标的追求。因此,以某选矿厂为实际背景,设计了一套基于案例推理技术确定各工序工艺指标目标值的系统,为避免人工确定初始案例的缺点,采用动态自组织映射神经网络从历史数据中提取了若干初始案例,该系统与各工序原有的过程优化控制系统相配合在实际生产中取得了较好效果。 The technical index optimization control is realized currently in individual section of mineral processing, but the targets in each section of mineral processing are still determined by the mineral engineers according to the feature of ores. With large extent of fuzziness and randomness, it is hard to cooperate effectively between the sections, and the purpose for better global production indices can not be reached easily. Considering the actual background in mineral processing plant, a system is designed to determine the technical indices of each section based on the technology of case-based reasoning. The system adopts the dynamic self-organizing mapping (SOM) network to pick-up the cases from the historical data. Preferable effect is obtained in practice with the cooperation between this system and the process optimization control system in each section.
出处 《控制工程》 CSCD 北大核心 2009年第3期371-374,382,共5页 Control Engineering of China
基金 国家自然科学基金重点资助项目(60534010) 国家创新研究群体科学基金资助项目(60521003) 长江学者和创新团队发展计划基金资助项目(IRT0421)
关键词 选矿过程 工艺指标 综合生产指标 案例推理 自组织神经网络 mineral processing technical indices global production indices case-based reasoning(CBR) self-organizing mapping network
  • 相关文献

参考文献10

  • 1Hodouin D, Jamsa-Jounela S L. State of the art and challenges in mineral processing control[ J ]. Control Engineering Practice, 2001, 9(9) :995-1005.
  • 2Laine S, Pulkkinen K, Jamsa-Jounela S L. Online determination of the concentrator feed type at Outokumpu Hitura mine[J]. Minerals Engineering, 2000, 13 ( 8 ) : 881-895.
  • 3Jamsa-Jounela S L, Poikonen R, Vatanski N. Evaluation of control performance: methods, monitoring tool and applications in a flotation plant[ J]. Minerals Engineering, 2003,16( 11 ) : 1069-1074.
  • 4Ramasamy M, Narayanan S S, Rao Ch D P. Control of ball mill grinding circuit using model predictive control scheme[J]. Journal of Process Control, 2005,15 ( 3 ) :273-283.
  • 5Duarte M, Sepulveda F, Redard J P. Grinding operation optimization of the CODELCO-Andina concentrator plant [ J ]. Minerals Engineering, 1998,11 ( 12 ) : 1119-1142.
  • 6Suichies M, Leroux D, Dechert C. An implementation of generalized predictive control in a flotation plant[J].Control Engineering Practice. 2000,8(3) :319-325.
  • 7熊淑华.由贵州某萤石矿石生产优质萤石精矿的浮选工艺条件[J].有色金属,2004,56(41):103-105. 被引量:3
  • 8Kolodner J L. Improving human decision making through casebased decision aiding[J]. AI Magazine, 1991, 12(3) :52-68.
  • 9Chai T Y, Ding J L. Integrated automation system for hematite ores processing and its applications [ J]. Measurement and Control, 2006,39 ( 5 ) : 140-146.
  • 10Alahakoon D, Halgamuge S K, Srinivasan B. Dynamic self-organizing maps with controlled growth for knowledge discovery [J]. IEEE Transactions on Neural Networks, 2000, 11(3) :601-614.

二级参考文献3

共引文献2

同被引文献41

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部