摘要
讨论了Hilbert空间H上两严格正算子A,B的一种比A2≥AB2A1/2更弱的序关系A4≥A2B2A22/3,并且讨论了在这种序关系下若干α幂平均函数的算子单调性.
An order A^4≥(A^2B^2A^2)^2/3 between any two strictly positive operators A and B on a Hilbert 1 space H is discussed, which is weaker than A^2≥ (AB^2A)^1/2. The operator monotonicity of α - power mean functions associated with this order is shown.
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第2期241-244,共4页
Journal of Donghua University(Natural Science)
关键词
序
α幂平均函数
算子单调性
order
α- power mean
operator monotonicity