期刊文献+

基于槽式孔板与神经网络的湿气流量计

Wet Gas Flowmeter Based on Slotted Orifice and Neural Network
下载PDF
导出
摘要 在研究某湿气流量计样机的基础上,提出了一种应用槽式孔板与神经网络技术实现湿气流量计量的方法。简要介绍了槽式孔板的特点及流量计样机的结构,采用统计分析与相关分析相结合的方法对信号特征量进行筛选,并应用神经网络技术对数据处理、构建二级神经网络系统。此设计实现了流型识别和计量,利用网络集成技术进一步提高网络系统的计量精度和泛化能力。现场测试结果表明,应用该流量计进行湿气流量计量,其气相累积流量计量误差为3%,液相累积流量计量误差为6%,满足了生产计量的精度要求。 On the basis of the prototype of certain wet gas flowmeter, the metering technology for wet gas flow based on slotted orifice and neural network ( NN ) is proposed. The features of the slotted orifice and the structure of the prototype are introduced briefly. By adopting the method combining statistical analysis and correlation analysis, the features of measuring signals are screening selected, the data are processed by using neural network technology. The double level NN system is structured to implement flow type identification and flow metering respectively; and with network integration technology, the metering accuracy and generalizing capability are enhanced. The result of field test shows that the cumulated error of gas phase is 3% ; and the cumulated error of liquid phase is 6% ;which meets the requirement of production.
作者 石岗 耿艳峰
出处 《自动化仪表》 CAS 北大核心 2009年第5期46-48,共3页 Process Automation Instrumentation
基金 国家自然科学基金资助项目(编号:60672003)
关键词 槽式孔板 神经网络 网络集成 特征提取 湿气 计量技术 Slotted orifice Neural network Network integration Feature extraction Wet gas Measurement technology
  • 相关文献

参考文献12

  • 1Steven R N. Wet gas metering with a horizontally mounted venturi meter [J]. Flow Measurement & Instrumentation, 2002(12) :361 - 372.
  • 2David G S, Gregor B, David H. Wet gas venturi metering [ C ]// SPE Annual Technical Conference, Texas, 2002.
  • 3Nel. The evaluation of wet gas metering technologies for offshore application [ R ]. Differential Pressure Meters Flow Measurement Guidance Note, 2003.
  • 4孙斌,王强,周云龙.基于多尺度信息熵特征和RBF神经网络的气液两相流流型识别方法[J].仪器仪表学报,2006,27(7):725-729. 被引量:15
  • 5Mack E S, Stuart L S. A neural network model for prediction of liquid hold up in two-phase horizontal flow[ J]. SPE Production & Facilities, 2004,19(2) :67 -76.
  • 6方立德,张涛,罗翼.基于神经网络的水平文丘里湿气测量模型[J].化工学报,2007,58(4):957-962. 被引量:8
  • 7Geng Yanfeng, Zheng Jinwu, Shi Tianming. Study on the metering characteristics of a slotted orifice for wet gas flow[ J]. Flow Measurement and Instrumentation, 2006,17 (2) : 123 - 128.
  • 8耿艳峰,石岗,李玉星,郑金吾.槽式孔板的低含液率气液两相流测量特性[J].化工学报,2007,58(7):1719-1725. 被引量:15
  • 9Darwich T D, Haluk T, Archer J S, et al. A software technique for flow-rate measurement in horizontal two-phase flow [ J ]. SPE Production Engineering, 1991,6 (3) :265 - 270.
  • 10Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning [ C ] //Advances in Neural Information Processing Systems, 1995:231- 238.

二级参考文献34

  • 1桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用[J].中国电机工程学报,2005,25(4):99-102. 被引量:59
  • 2林军,董守平,黄辉.多相流量计测单元阻力模型实验研究[J].实验流体力学,2005,19(1):26-30. 被引量:1
  • 3耿艳峰,冯叔初,郑金吾.槽式孔板的气液两相压降倍率特性[J].化工学报,2006,57(5):1138-1142. 被引量:10
  • 4崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 5MI Y,ISHII M,et al.Vertical two-phase flow recognition using advanced instrumentation and neural networks[J].Nuclear Engineering and Design,1998,184:409-420.
  • 6Lin Zonghu(林宗虎).Gas-Liquid Two-phase Flow and Heat Exchangers(气液两相流和沸腾传热).Xi'an:Xi'an Jiaotong University Press,2003
  • 7Murdock J W.Two-phase flow measurements with orifices.Basic Engineering,1962,84(4):419-433
  • 8Agar J,David Farchy.Wet gas metering using dissimilar flow sensors-theory and field trial results//SPE Annual Technical Conference.SPE77349,2002:1-6
  • 9Chisholm D.Two-phase flow through sharp-edged orifices.Mechanical Engineering Science,1977,19(3):128-130
  • 10Smith R V,Leang J T.Evaluation of correlations for two-phase flowmeters three current-one new.Engineering for Power,1975,97(4):589-594

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部