期刊文献+

有界完备dcpo上的线性逼近——强线性FS-domain 被引量:1

Linear approximation on bounded complete dcpos——strongly linear FS-domains
原文传递
导出
摘要 作者利用有上伴的映射构成的函数空间定义了有界完备dcpo上的强线性FS-domain,并讨论了它和线性FS-格的关系以及它的拓扑、范畴等性质。 In this paper, the authors define strongly linear FS-domains with maps having upper adjoints. Some topological and categorical properties and the relation to linear FS-lattices are discussed.
作者 张晴 寇辉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期525-528,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 有界完备dcpo 强线性FS-domain 线性 FS-格 伴随 反射子范畴 bounded complete dcpo, strongly linear FS-domain, Linear FS-lattice, adjunction, reflectivesubcategory
  • 相关文献

参考文献9

  • 1Kou H. The largest topologically Cartesian closed categories of domains as topological spaces[C] ff Keimel K. Domain and processes. New York: Kluwer Academic Publisher, 2001.
  • 2Kou H. RW-spaces and compactness of function spaces for L-domains[J]. Topology and its Applications, 2003, 129: 211.
  • 3Jung A. The classification of continuous domains[C] //Logic in Computer Science, 1990, LICS'90, Proceedings, Philadelplid, USA. IEEE Computer Society Press, 1990.
  • 4Jung A. Cartesian closed categories of domains[M]. Volume 66 of CWI Tracts. Amsterdam Centrum voor Wiskunde en Information,1989.
  • 5Lawson J D, Xu L S. Maximal classes of topological spaces and domains determined by function spaces [J]. Applied Categorical Structures, 2003, 11 :391.
  • 6Huth M, Jung A, Keimel K. Linear types and approximation[J]. Math Struct in Comp Science, 2000 (10) : 719.
  • 7Gierz G, Hoffmann K H, Keimel K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
  • 8Michael W. Mislove. Topology, domain theory and theoretical computer science [J ]. Topology and its Applications, 1998, 89:.
  • 9Huth M, Jung A, Keimel K. Linear types, approximation and topology[C] // Logic in Computer Science, 1994, LICS'94, Proceeding, Symposium on. IEEE Computer Society Press, 1994.

同被引文献8

  • 1闵超,梁基华.关于连续Ω-范畴的讨论(英文)[J].四川大学学报(自然科学版),2009,46(6):1595-1599. 被引量:1
  • 2Day A. Filter monads, continuous lattices and cloure systerms[J]. Can j Math, 1975, 27.. 50.
  • 3Gierz G, Hofmann K H, Keimel K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
  • 4He W. Category theory[M]. Beijing: Science Press, 2006.
  • 5Seung-On Lee. On countably approximating lattices [J]. J Korean MathSoc, 1988, 25: 11.
  • 6Maclane S. Categories for the working mathematician, 2nd ed[M]. Berlin.. Springer, 1998.
  • 7Erne M, £-Continuous posers and their topological manifestation [J]. Applied Categorical Structures, 1999, 7: 31.
  • 8HuangFP LiangJH KouH.A note on distributivity of open filter domains.四川大学学报:自然科学版,2008,:236-236.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部