期刊文献+

相对论的受驱谐振子混沌:相对论效应和驱动力效应(英文) 被引量:1

Chaos in driven relativistic harmonic oscillator: the relativistic effect and the driving force effect
原文传递
导出
摘要 本文用数值模拟方法研究了相对论效应和驱动力效应对谐振子动力学行为的影响作用,结果表明:相对论效应和驱动力效应的协同作用能使体系的振动频率发生改变,从而使体系产生混沌现象。如果仅存在一种效应,体系就不可能出现混沌,另外,研究还发现体系存在着取决于光速值和驱动力振幅值的混沌区域。在这个混沌区内,光速值和驱动力振幅值的比例约为1:5。 The relativistic effect and driving force effect on the dynamical behaviours of driven harmonic oscillator have been studied in this paper. It is found that, at proper relativistic effect and the external force effect,the oscillation frequency of system would shift from its natural value, consequently, chaos might be exhibited. If only one of two effects is considered, the system does not show the chaos. Furthermore, there exists a region where the system is chaos. In this region, the ratio of light speed and the amplitude of the driving force is about 1 : 5.
作者 施建成 罗敏
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期707-712,共6页 Journal of Sichuan University(Natural Science Edition)
基金 广西教育厅科研基金(200707LX178)
关键词 混沌 相对论效应 谐振子 chaos, relativistic effect, harmonic oscillator
  • 相关文献

参考文献16

  • 1Chen C, Davidson R C. Chaotic electron dynamics for relativistic-electron-beam propagation through a planar wiggler magnetic field [J]. Phys Rev A, 1990, 42:5041.
  • 2Billardon M. Storage ring free-electron laser and chaos [J]. Phys Rev Lett, 1990, 65:713.
  • 3Schieve W C, Horwitz L P. Chaos in the classical relativistic mechanics of a damped Duffing-like driven system [J]. Phys Lett A. 1991, 156: 140.
  • 4Chernikov A A, Tel T, Vattay G, et al. Chaos in the relativistic generalization of the standard map [J]. Phys Rev A, 1989, 40: 4072.
  • 5Chen C, Davidson R C. Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam [J]. Phys Rev Lett, 1994, 72: 2195.
  • 6Chernikov A A, Schmidt G. Chaotic scattering and acceleration of particles by waves [J]. Chaos, 1993, 3 : 525.
  • 7Leemans W P, Joshi C, Mori W B, et al. Nonlinear dynamics of driven relativistic electron plasma waves [J]. Phys Rev A, 1992, 46: 5112.
  • 8Lee S W, Kim J H, Lee H W. Relativistic nonlinear dynamics of a driven constant-period oscillator [J]. Phys Rev E, 1997, 56: 4090.
  • 9Lee S W, Lee H W. Chaotic one-dimensional harmonic oscillator [J]. Phys Rev E, 1997, 56:5245.
  • 10Kim J H, Lee H W. Nonlinear resonance and chaos in the relativistic phase space for driven nonlinear systems[J]. Phys Rev E, 1995, 52: 473.

二级参考文献1

共引文献2

同被引文献27

  • 1杨祖华,龙超云,田仁军.非对易相空间中各向同性带电谐振子能级的研究(英文)[J].四川大学学报(自然科学版),2009,46(6):1728-1732. 被引量:1
  • 2曾谨言.量子力学[M].北京:科学出版社,1997..
  • 3Snyder H S. Quantized space-time [J]. Phys Rev, 1947, 71 (1): 38.
  • 4Snyder H S. The electromagnetic field in quantized space-time [J]. Phys Rev, 1947, 72 (1): 68.
  • 5Seiberg N, Witten E. String theory and noncommutative geometry [J]. IHEP, 1999, 99 (09): 032.
  • 6Douglas M Rand Nekrasov N A. Noncommutative fieldtheory[J]. Rev Mod Phys , 2001, 73 (4): 977.
  • 7Szabo R J. Quantum field theory on noncommutative spaces [J]. Phys Rep, 2003, 378 (4): 207.
  • 8Dayi 0 F, Jellal A. Hall effect in noncommutative coordinates [J]. J Math Phys , 2002, 43 (0): 4592.
  • 9Duval C, Horvdthy P A. Exotic galilean symmetry in the non-commutative plane and the Hall effect [J]. J Phys A: Math Gen , 2001, 34 (47): 10097.
  • 10Alvarez P D, Gomis 1, Kamimura K and Plyushchay MS. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton - Hooke symmetry [J]. Phys Lett B, 2008, 659 (5): 906.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部