期刊文献+

线性空间中集值映射向量优化问题的ε-真有效解 被引量:1

ε-Properly Efficient Solutions of Vector Optimization Problems with Set-Valued Maps in Linear Spaces
下载PDF
导出
摘要 利用一种称为代数型闭包的向量闭包,讨论了线性空间中极值映射向量优化问题的ε-真有效解,在集值映射为广义向量似凸的假设下,建立了这种解的标量化定理和ε-Lagrange乘子定理. The authors use a concept of algebraic type of closure which is called vector closure . Through this closure they discuss ε-properly efficient solutions of vector optimization problems with set-valued maps. Under the assumption of the generalized cone-subconvexlikeness for Set-valued maps, the authors obtain the scalarization theorem and the ε-Lagrange multipliers theorems for ε-properly efficient solutions of vector optimization problems with set-valued maps.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期82-86,共5页 Journal of Southwest University(Natural Science Edition)
关键词 集值映射 向量优化 向量闭包 向量拟凸 ε-真有效性 set-valued maps vector optimization vector-convexlikeness ε-proper efficiency
  • 相关文献

参考文献1

二级参考文献1

共引文献30

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部