期刊文献+

小波互信息及其在心电分析中的应用 被引量:3

Wavelet Mutual Information and ECG Analysis
下载PDF
导出
摘要 为探究信号小波成分中的有用信息,提出了从小波变换(WT)系数和多层小波分解(WD)成分的延时互信息(MI)得出信号分析指标的新方法。以年轻(21~34岁)与年老(68~81岁)二组健康人心电图(ECG)为实验数据,用Symlets 4为母小波对ECG进行WT和WD,计算出MI与心率周期对应的极大值(LM)和表示该波峰形态特征的波形宽度(WW)等多个特征指标。结果表明,在尺度a=12时的WT系数及第3层细节的LM都是年轻组明显小于年老组(P<0.001),第2层近似和第3层细节的WW都是年轻组明显大于年老组(P<0.001)。ECG的延时互信息可揭示出心率变异性随年龄而减少。 To explore the useful information in wavelet components of a signal, a new method is presented. The analysis indices of the signal are obtained from time-delayed mutual information(MI) of wavelet transform(WT) coefficients and multilevel wavelet decomposition (WD) components. The electrocardiograms (ECGs) are used as experimental data collected from young (21-34 yr) and elderly (68-81 yr) groups of healthy subjects. The data analysis is performed by WT and WD using Symlets 4 as a mother wavelet. The multiple characteristic indices of MI are calculated, such as the local maximum (LM) corresponding to the period of the heart rate, the waveform width (WW) figure feature of the wave crest, etc. Results show that both LM of WT coefficients at a = 12 and that of the detail at the third level are significantly lower in the young group than that in the elderly group (P〈0. 001). WWs of the approximation at the second level and the detail at the third level in the young group are greater than that in the elderly group (P〈0.001). The time-delayed MIs of ECG indicate that the heart rate variability is decreased with aging.
作者 张佃中
出处 《数据采集与处理》 CSCD 北大核心 2009年第3期391-395,共5页 Journal of Data Acquisition and Processing
关键词 小波变换 互信息 心电图 wavelet transform(WT) mutual information(MI) electrocardiogram (ECG)
  • 相关文献

参考文献11

  • 1Andreia D, Rui M, Diana A M. Mutual information: a measure of dependency for nonlinear time series[J]. Physica A, 2004,344 (2):326-329.
  • 2HoyderD, Leder U, Hoyer H, et al. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infraction[J]. Medical Engineering Physics, 2002,24 (1) : 33-43.
  • 3Sun H N, Seung H J, Soo Y K, et al. EEG in schizophrenic patients: mutual information analysis[J]. Clinical Neurophysiology,2002,113(12): 1954- 1960.
  • 4Vigo D E, Guinjoan S M, Scaramal M, et al. Wavelet transform shows age-related changes of heart rate variability within independent frequency components[J]. Autonomic Neuroscience,2005, 123 (2) :94-100.
  • 5Pikkujamsa S M, Makikallio T H, Sourander L B,et al. Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory [J]. Circulation, 1999, 100(4): 393-399.
  • 6Lipsitz L A, Mietus J, Moody G B,et al. Spectral characteristics of heart rate variability before and during postural tilt relations to aging and risk of syncope[J]. Circulation, 1990,81 (6) : 1803-1810.
  • 7Togo F, Yamamoto Y. Decreased fractal component of human heart rate variability during non-REM sleep[J]. Am J Physiol Heart Circ Physiol,2001, 280(1):H17-H21.
  • 8Makikatlio T H, Huikuri H V, Hintze U, et al. Fractal analysis and time and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure [J]. Am J Cardiol,2001,87(2) : 178-182.
  • 9Richman J S, Moorman J R. Physiological timeseries analysis using approximate entropy and sample entropy[J]. Am J Physiol Heart Circ Physiol,2000, 278(6) : H2039-H2049.
  • 10徐克学.生物数学[M].北京:科学出版社,2001.216.

二级参考文献2

  • 1章照止,信息论与最优编码,1993年
  • 2周炯磐,信息理论基础,1983年

共引文献27

同被引文献23

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部